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Preface

This book provides a broad introduction to optimization with a focus on practical
algorithms for the design of engineering systems. We cover a wide variety of
optimization topics, introducing the underlying mathematical problem formula-
tions and the algorithms for solving them. Figures, examples, and exercises are
provided to convey the intuition behind the various approaches.

This text is intended for advanced undergraduates and graduate students
as well as professionals. The book requires some mathematical maturity and
assumes prior exposure to multivariable calculus, linear algebra, and probability
concepts. Some review material is provided in the appendix. Disciplines where
the book would be especially useful include mathematics, statistics, computer
science, aerospace, electrical engineering, and operations research.

Fundamental to this textbook are the algorithms, which are all implemented
in the Julia programming language. We have found the language to be ideal for
specifying algorithms in human readable form. Permission is granted, free of
charge, to use the code snippets associated with this book, subject to the condition
that the source of the code is acknowledged. We anticipate that others may want
to contribute translations of these algorithms to other programming languages.
As translations become available, we will link to them from the book’s webpage.

Mykel J . Kochenderfer
Tim A. Wheeler
Stanford, Calif.
October 30, 2018

Ancillary material is available on the book’s webpage:
http://mitpress.mit.edu/algorithms-for-optimization

http://mitpress.mit.edu/algorithms-for-optimization
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1 Introduction

Many disciplines involve optimization at their core. In physics, systems are driven
to their lowest energy state subject to physical laws. In business, corporations
aim to maximize shareholder value. In biology, fitter organisms are more likely
to survive. This book will focus on optimization from an engineering perspective,
where the objective is to design a system that optimizes a set of metrics subject to
constraints. The system could be a complex physical system like an aircraft, or it
could be a simple structure such as a bicycle frame. The system might not even be
physical; for example, we might be interested in designing a control system for
an automated vehicle or a computer vision system that detects whether an image
of a tumor biopsy is cancerous. We want these systems to perform as well as
possible. Depending on the application, relevant metrics might include efficiency,
safety, and accuracy. Constraints on the design might include cost, weight, and
structural soundness.

This book is about the algorithms, or computational processes, for optimization.
Given some representation of the systemdesign, such as a set of numbers encoding
the geometry of an airfoil, these algorithms will tell us how to search the space
of possible designs with the aim of finding the best one. Depending on the
application, this search may involve running physical experiments, such as wind
tunnel tests, or it might involve evaluating an analytical expression or running
computer simulations. We will discuss computational approaches for addressing
a variety of challenges, such as how to search high-dimensional spaces, handling
problems where there are multiple competing objectives, and accommodating
uncertainty in the metrics.
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1.1 A History

Wewill begin our discussion of the history of algorithms for optimization1 with the 1 This discussion is not meant to be
comprehensive. A more detailed
history is provided by X.-S. Yang,
‘‘A Brief History of Optimization,’’
in Engineering Optimization. Wiley,
2010, pp. 1–13.

ancient Greek philosophers. Pythagoras of Samos (569–475 BCE), the developer
of the Pythagorean theorem, claimed that ‘‘the principles of mathematics were the
principles of all things,’’2 popularizing the idea that mathematics couldmodel the

2 Aristotle, Metaphysics, trans. by
W.D. Ross. 350 BCE, Book I, Part 5.

world. Both Plato (427–347 BCE) andAristotle (384–322 BCE) used reasoning for
the purpose of societal optimization.3 They contemplated the best style of human

3 See discussion by S. Kiranyaz, T.
Ince, and M. Gabbouj, Multidimen-
sional Particle Swarm Optimization
for Machine Learning and Pattern
Recognition. Springer, 2014, Sec-
tion 2.1.

life, which involves the optimization of both individual lifestyle and functioning
of the state. Aristotelian logic was an early formal process—an algorithm—by
which deductions can be made.

Optimization of mathematical abstractions also dates back millennia. Euclid
of Alexandria (325–265 BCE) solved early optimization problems in geometry,
including how to find the shortest and longest lines from a point to the circumfer-
ence of a circle. He also showed that a square is the rectangle with the maximum
area for a fixed perimeter.4 The Greek mathematician Zenodorus (200–140 BCE) 4 See books III and VI of Euclid, The

Elements, trans. by D. E. Joyce. 300
BCE.studied Dido’s problem, shown in figure 1.1.

sea

Carthage

Figure 1.1. Queen Dido, founder
of Carthage, was granted as much
land as she could enclose with
a bullhide thong. She made a
semicircle with each end of the
thong against the Mediterranean
Sea, thus enclosing the maximum
possible area. This problem is men-
tioned in Virgil’s Aeneid (19 BCE).

Others demonstrated that nature seems to optimize. Heron of Alexandria
(10–75 CE) showed that light travels between points through the path of shortest
length. Pappus of Alexandria (290–350 CE), among his many contributions to
optimization, argued that the hexagon repeated in honeycomb is the optimal
regular polygon for storing honey; its hexagonal structure uses the least material
to create a lattice of cells over a plane.5

5 T.C. Hales, ‘‘The Honeycomb
Conjecture,’’ Discrete & Computa-
tional Geometry, vol. 25, pp. 1–22,
2001.

Central to the study of optimization is the use of algebra, which is the study
of the rules for manipulating mathematical symbols. Algebra is credited to the
Persian mathematician al-Khwārizmī (790–850 CE) with the treatise ‘‘al-Kitāb al-
jabr wal-muqābala,’’ or ‘‘The Compendious Book on Calculation by Completion
and Balancing.’’ Algebra had the advantage of using Hindu-Arabic numerals,
including the use of zero in base notation. Theword al’jabr is Persian for restoration
and is the source for the Western word algebra. The term algorithm comes from
algoritmi, the Latin translation and pronunciation of al-Khwārizmī’s name.

Optimization problems are often posed as a search in a space defined by a set
of coordinates. Use of coordinates comes from René Descartes (1596–1650), who
used two numbers to describe a point on a two-dimensional plane. His insight
linked algebra, with its analytic equations, to the descriptive and visual field of
geometry.6 His work also included a method for finding the tangent to any curve

6 R. Descartes, ‘‘La Géométrie,’’ in
Discours de la Méthode. 1637.
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whose equation is known. Tangents are useful in identifying the minima and
maxima of functions. Pierre de Fermat (1601–1665) began solving for where the
derivative is zero to identify potentially optimal points.

The concept of calculus, or the study of continuous change, plays an impor-
tant role in our discussion of optimization. Modern calculus stems from the
developments of Gottfried Wilhelm Leibniz (1646–1716) and Sir Isaac Newton
(1642–1727). Both differential and integral calculus make use of the notion of
convergence of infinite series to a well-defined limit.

The mid-twentieth century saw the rise of the electronic computer, spurring
interest in numerical algorithms for optimization. The ease of calculations allowed
optimization to be applied to much larger problems in a variety of domains. One
of the major breakthroughs came with the introduction of linear programming,
which is an optimization problem with a linear objective function and linear
constraints. Leonid Kantorovich (1912–1986) presented a formulation for linear
programming and an algorithm to solve it.7 It was applied to optimal resource 7 L.V. Kantorovich, ‘‘A New

Method of Solving Some Classes
of Extremal Problems,’’ in Pro-
ceedings of the USSR Academy of
Sciences, vol. 28, 1940.

allocation problems duringWorldWar II. George Dantzig (1914–2005) developed
the simplex algorithm, which represented a significant advance in solving linear
programs efficiently.8 Richard Bellman (1920–1984) developed the notion of dy-

8 The simplex algorithm will be
covered in chapter 11.namic programming, which is a commonly used method for optimally solving

complex problems by breaking them down into simpler problems.9 Dynamic pro- 9 R. Bellman, ‘‘On the Theory ofDy-
namic Programming,’’ Proceedings
of the National Academy of Sciences of
the United States of America, vol. 38,
no. 8, pp. 716–719, 1952.

gramming has been used extensively for optimal control. This textbook outlines
many of the key algorithms developed for digital computers that have been used
for various engineering design optimization problems.

Decades of advances in large scale computation have resulted in innovative
physical engineering designs aswell as the design of artificially intelligent systems.
The intelligence of these systems have been demonstrated in games such as chess,
Jeopardy!, and Go. IBM’s Deep Blue defeated the world chess champion Garry
Kasparov in 1996 by optimizing moves by evaluating millions of positions. In
2011, IBM’s Watson played Jeopardy! against former winners Brad Futter and Ken
Jennings. Watson won the first place prize of $1 million by optimizing its response
with respect to probabilistic inferences about 200 million pages of structured
and unstructured data. Since the competition, the system has evolved to assist in
healthcare decisions andweather forecasting. In 2017, Google’s AlphaGo defeated
Ke Jie, the number one ranked Go player in the world. The system used neural
networks with millions of parameters that were optimized from self-play and
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data from human games. The optimization of deep neural networks is fueling a
major revolution in artificial intelligence that will likely continue.10 10 I. Goodfellow, Y. Bengio, and

A. Courville, Deep Learning. MIT
Press, 2016.

1.2 Optimization Process

A typical engineering design optimization process is shown in figure 1.2.11 The 11 Further discussion of the design
process in engineering is provided
in J. Arora, Introduction to Optimum
Design, 4th ed. Academic Press,
2016.

role of the designer is to provide a problem specification that details the parameters,
constants, objectives, and constraints that are to be achieved. The designer is
responsible for crafting the problem and quantifying the merits of potential
designs. The designer also typically supplies a baseline design or initial design
point to the optimization algorithm.

design
specifications

Initial
Design

Evaluate
Performance

Change
Design

Good?
final

design

no

yes

Figure 1.2. The design optimiza-
tion process. We seek to automate
the optimization procedure high-
lighted in blue.

This book is about automating the process of refining the design to improve
performance. An optimization algorithm is used to incrementally improve the
design until it can no longer be improved or until the budgeted time or cost has
been reached. The designer is responsible for analyzing the result of the optimiza-
tion process to ensure its suitability for the final application. Misspecifications in
the problem, poor baseline designs, and improperly implemented or unsuitable
optimization algorithms can all lead to suboptimal or dangerous designs.

There are several advantages of an optimization approach to engineering de-
sign. First of all, the optimization process provides a systematic, logical design
procedure. If properly followed, optimization algorithms can help reduce the
chance of human error in design. Sometimes intuition in engineering design can
bemisleading; it can bemuch better to optimizewith respect to data. Optimization
can speed the process of design, especially when a procedure can be written once
and then be reapplied to other problems. Traditional engineering techniques are
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often visualized and reasoned about by humans in two or three dimensions. Mod-
ern optimization techniques, however, can be applied to problems with millions
of variables and constraints.

There are also challenges associated with using optimization for design. We are
generally limited in our computational resources and time, and so our algorithms
have to be selective in how they explore the design space. Fundamentally, the
optimization algorithms are limited by the designer’s ability to specify the prob-
lem. In some cases, the optimization algorithm may exploit modeling errors or
provide a solution that does not adequately solve the intended problem. When an
algorithm results in an apparently optimal design that is counterintuitive, it can
be difficult to interpret. Another limitation is that many optimization algorithms
are not always guaranteed to produce optimal designs.

1.3 Basic Optimization Problem

The basic optimization problem is:

minimize
x

f (x)

subject to x ∈ X
(1.1)

Here, x is a design point. A design point can be represented as a vector of values
corresponding to different design variables. An n-dimensional design point is
written:12 12 As in Julia, square brackets with

comma-separated entries are used
to represent column vectors. De-
sign points are column vectors.

[x1, x2, · · · , xn] (1.2)
where the ith design variable is denoted xi. The elements in this vector can be
adjusted to minimize the objective function f . Any value of x from among all points
in the feasible set X that minimizes the objective function is called a solution or
minimizer. A particular solution is written x∗. Figure 1.3 shows an example of a
one-dimensional optimization problem.

This formulation is general, meaning that any optimization problem can be
rewritten according to equation (1.1). In particular, a problem

maximize
x

f (x) subject to x ∈ X (1.3)

can be replaced by

minimize
x

− f (x) subject to x ∈ X (1.4)
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X

x∗

x

f(
x
)

Figure 1.3. A one-dimensional op-
timization problem. Note that the
minimum is merely the best in the
feasible set—lower points may ex-
ist outside the feasible region.

The new form is the same problem in that it has the same set of solutions.
Modeling engineering problems within this mathematical formulation can be

challenging. The way in which we formulate an optimization problem can make
the solution process either easy or hard.13 Wewill focus on the algorithmic aspects

13 See discussion in S. Boyd and
L. Vandenberghe, Convex Optimiza-
tion. Cambridge University Press,
2004.

of optimization that arise after the problem has been properly formulated.14 14 Many texts provide examples of
how to translate real-world opti-
mization problems into optimiza-
tion problems. See, for example,
the following: R.K. Arora, Opti-
mization: Algorithms and Applica-
tions. Chapman and Hall/CRC,
2015. A.D. Belegundu and T.R.
Chandrupatla, Optimization Con-
cepts and Applications in Engineer-
ing, 2nd ed. Cambridge Univer-
sity Press, 2011. A. Keane and P.
Nair, Computational Approaches for
Aerospace Design. Wiley, 2005. P. Y.
Papalambros and D. J. Wilde, Prin-
ciples of Optimal Design. Cambridge
University Press, 2017.

Since this book discusses a wide variety of different optimization algorithms,
one may wonder which algorithm is best. As elaborated by the no free lunch
theorems of Wolpert and Macready, there is no reason to prefer one algorithm over
another unless we make assumptions about the probability distribution over the
space of possible objective functions. If one algorithmperforms better than another
algorithm on one class of problems, then it will perform worse on another class
of problems.15 For many optimization algorithms to work effectively, there needs

15 The assumptions and results of
the no free lunch theorems are
provided by D.H. Wolpert and
W.G. Macready, ‘‘No Free Lunch
Theorems for Optimization,’’ IEEE
Transactions on Evolutionary Compu-
tation, vol. 1, no. 1, pp. 67–82, 1997.

to be some regularity in the objective function, such as Lipschitz continuity or
convexity, both topics that we will cover later. As we discuss different algorithms,
we will outline their assumptions, the motivation for their mechanism, and their
advantages and disadvantages.

1.4 Constraints

Manyproblems have constraints. Each constraint limits the set of possible solutions,
and together the constraints define the feasible set X . Feasible design points do
not violate any constraints. For example, consider the following optimization



1.5. critical points 7

problem:
minimize

x1,x2

f (x1, x2)

subject to x1 ≥ 0

x2 ≥ 0

x1 + x2 ≤ 1

(1.5)

The feasible set is plotted in figure 1.4.

(1, 0)

(0, 1)

X
x1

x2

Figure 1.4. The feasible set X asso-
ciated with equation (1.5).

Constraints are typically written with ≤, ≥, or =. If constraints involve < or
> (i.e., strict inequalities), then the feasible set does not include the constraint
boundary. A potential issue with not including the boundary is illustrated by this
problem:

minimize
x

x

subject to x > 1
(1.6)

The feasible set is shown in figure 1.5. The point x = 1 produces values smaller
than any x greater than 1, but x = 1 is not feasible. We can pick any x arbitrarily
close to, but greater than, 1, but no matter what we pick, we can always find an
infinite number of values even closer to 1. We must conclude that the problem
has no solution. To avoid such issues, it is often best to include the constraint
boundary in the feasible set.

(1, 1)
x

f (x)

Figure 1.5. The problem in equa-
tion (1.6) has no solution because
the constraint boundary is not fea-
sible.

1.5 Critical Points

Figure 1.6 shows a univariate function16 f (x) with several labeled critical points, 16 A univariate function is a func-
tion of a single scalar. The term uni-
variate describes objects involving
one variable.

where the derivative is zero, that are of interest when discussing optimization
problems. When minimizing f , we wish to find a global minimizer, a value of x for
which f (x) is minimized. A function may have at most one global minimum, but
it may have multiple global minimizers.

Unfortunately, it is generally difficult to prove that a given candidate point is
at a global minimum. Often, the best we can do is check whether it is at a local
minimum. A point x∗ is at a local minimum (or is a local minimizer) if there exists
a δ > 0 such that f (x∗) ≤ f (x) for all x with |x − x∗| < δ. In the multivariate
context, this definition generalizes to there being a δ > 0 such that f (x∗) ≤ f (x)

whenever ‖x− x∗‖ < δ.
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global min
weak local min strong local min

inflectionf (x)

x

Figure 1.6. Examples of critical
points of interest to optimization
algorithms (where the derivative
is zero) on a univariate function.

Figure 1.6 shows two types of local minima: strong local minima and weak local
minima. A strong local minimizer, also known as a strict local minimizer, is a point
that uniquely minimizes f within a neighborhood. In other words, x∗ is a strict
local minimizer if there exists a δ > 0 such that f (x∗) < f (x) whenever x∗ 6= x

and |x − x∗| < δ. In the multivariate context, this generalizes to there being a
δ > 0 such that f (x∗) < f (x) whenever x∗ 6= x and ‖x− x∗‖ < δ. A weak local
minimizer is a local minimizer that is not a strong local minimizer.

The derivative is zero at all local and global minima of continuous, unbounded
objective functions. While having a zero derivative is a necessary condition for a
local minimum,17 it is not a sufficient condition. 17 Points with nonzero derivatives

are never minima.Figure 1.6 also has an inflection point where the derivative is zero but the point
does not locally minimize f . An inflection point is where the sign of the second
derivative of f changes, which corresponds to a local minimum or maximum of
f ′. An inflection point does not necessarily have a zero derivative.

1.6 Conditions for Local Minima

Many numerical optimization methods seek local minima. Local minima are
locally optimal, but we do not generally knowwhether a localminimum is a global
minimum. The conditions we discuss in this section assume that the objective
function is differentiable. Derivatives, gradients, and Hessians are reviewed in
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the next chapter. We also assume in this section that the problem is unconstrained.
Conditions for optimality in constrained problems are introduced in chapter 10.

1.6.1 Univariate
Adesign point is guaranteed to be at a strong local minimum if the local derivative
is zero and the second derivative is positive:
1. f ′(x∗) = 0

2. f ′′(x∗) > 0

A zero derivative ensures that shifting the point by small values does not
affect the function value. A positive second derivative ensures that the zero first
derivative occurs at the bottom of a bowl.18 18 If f ′(x) = 0 and f ′′(x) < 0, then

x is a local maximum.Apoint can also be at a local minimum if it has a zero derivative and the second
derivative is merely nonnegative:
1. f ′(x∗) = 0, the first-order necessary condition (FONC)19 19 A point that satisfies the first-

order necessary condition is some-
times called a stationary point.2. f ′′(x∗) ≥ 0, the second-order necessary condition (SONC)

These conditions are referred to as necessary because all local minima obey
these two rules. Unfortunately, not all points with a zero derivative and a zero
second derivative are local minima, as demonstrated in figure 1.7.

The first necessary condition can be derived using the Taylor expansion20 20 The Taylor expansion is derived
in appendix C.about our candidate point x∗:

f (x∗ + h) = f (x∗) + h f ′(x∗) + O(h2) (1.7)
f (x∗ − h) = f (x∗)− h f ′(x∗) + O(h2) (1.8)
f (x∗ + h) ≥ f (x∗) =⇒ h f ′(x∗) ≥ 0 (1.9)
f (x∗ − h) ≥ f (x∗) =⇒ h f ′(x∗) ≤ 0 (1.10)

=⇒ f ′(x∗) = 0 (1.11)

where the asymptotic notation O(h2) is covered in appendix C.
The second-order necessary condition can also be obtained from the Taylor

expansion:

f (x∗ + h) = f (x∗) + h f ′(x∗)
︸ ︷︷ ︸

=0

+
h2

2
f ′′(x∗) + O(h3) (1.12)
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x∗
x∗ x∗

SONC but not FONC FONC and SONC FONC and SONC

Figure 1.7. Examples of the neces-
sary but insufficient conditions for
strong local minima.

We know that the first-order necessary condition must apply:

f (x∗ + h) ≥ f (x∗) =⇒ h2

2
f ′′(x∗) ≥ 0 (1.13)

since h > 0. It follows that f ′′(x∗) ≥ 0 must hold for x∗ to be at a local minimum.

1.6.2 Multivariate
The following conditions are necessary for x to be at a local minimum of f :
1. ∇ f (x) = 0, the first-order necessary condition (FONC)

2. ∇2 f (x) is positive semidefinite (for a reviewof this definition, see appendixC.6),
the second-order necessary condition (SONC)
The FONC and SONC are generalizations of the univariate case. The FONC tells

us that the function is not changing at x. Figure 1.8 shows examples of multivariate
functions where the FONC is satisfied. The SONC tells us that x is in a bowl.

The FONC and SONC can be obtained from a simple analysis. In order for x∗

to be at a local minimum, it must be smaller than those values around it:

f (x∗) ≤ f (x + hy) ⇔ f (x + hy)− f (x∗) ≥ 0 (1.14)

If we write the second-order approximation for f (x∗), we get:

f (x∗ + hy) = f (x∗) + h∇ f (x∗)⊤y +
1

2
h2y⊤∇2 f (x∗)y + O(h3) (1.15)

We know that at a minimum, the first derivative must be zero, and we neglect
the higher order terms. Rearranging, we get:

1

2
h2y⊤∇2 f (x∗)y = f (x + hy)− f (x∗) ≥ 0 (1.16)
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This is the definition of a positive semidefinite matrix, and we recover the SONC.
Example 1.1 illustrates how these conditions can be applied to the Rosenbrock
banana function.

A local maximum. The gradient
at the center is zero, but the
Hessian is negative definite.

A saddle. The gradient at the
center is zero, but it is not a
local minimum.

A bowl. The gradient at the
center is zero and the Hessian
is positive definite. It is a local
minimum.

Figure 1.8. The three local regions
where the gradient is zero.While necessary for optimality, the FONC and SONC are not sufficient for

optimality. For unconstrained optimization of a twice-differentiable function, a
point is guaranteed to be at a strong local minimum if the FONC is satisfied
and ∇2 f (x) is positive definite. These conditions are collectively known as the
second-order sufficient condition (SOSC).

1.7 Contour Plots

This book will include problems with a variety of numbers of dimensions, and
will need to display information over one, two, or three dimensions. Functions of
the form f (x1, x2) = y can be rendered in three-dimensional space, but not all
orientations provide a complete view over the domain. A contour plot is a visual
representation of a three-dimensional surface obtained by plotting regions with
constant y values, known as contours, on a two-dimensional plot with axes indexed
by x1 and x2. Example 1.2 illustrates how a contour plot can be interpreted.

1.8 Overview

This section provides a brief overview of the chapters of this book. The conceptual
dependencies between the chapters are outlined in figure 1.9.
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Consider the Rosenbrock banana function,

f (x) = (1− x1)
2 + 5(x2 − x2

1)
2

Does the point (1, 1) satisfy the FONC and SONC?
The gradient is:

∇ f (x) =

[
∂ f
∂x1
∂ f
∂x2

]

=

[

2
(
10x3

1 − 10x1x2 + x1 − 1
)

10(x2 − x2
1)

]

and the Hessian is:

∇2 f (x) =





∂2 f
∂x1∂x1

∂2 f
∂x1∂x2

∂2 f
∂x2∂x1

∂2 f
∂x2∂x2



 =

[

−20(x2 − x2
1) + 40x2

1 + 2 −20x1

−20x1 10

]

We compute ∇( f )([1, 1]) = 0, so the FONC is satisfied. The Hessian at [1, 1]

is: [

42 −20

−20 10

]

which is positive definite, so the SONC is satisfied.

Example 1.1. Checking the first-
and second-order necessary con-
ditions of a point on the Rosen-
brock function. The minimizer is
indicated by the dot in the figure
below.

−2 0 2
−2

0

2

x1

x
2

The function f (x1, x2) = x2
1 − x2

2. This function can be visualized in a three-
dimensional space based on its two inputs and one output. It can also be
visualized using a contour plot, which shows lines of constant y value. A
three-dimensional visualization and a contour plot are shown below.

−2
0

2 −2

0
2−5

0

5

x1

x2

−4

−4

−2

−2

0

0

0

0

2 2

4 4

−2 0 2

−2

0

2

x1

Example 1.2. An example three-
dimensional visualization and the
associated contour plot.
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2. Derivatives
3. Bracketing

4. Descent 5. First-Order
6. Second-Order

7. Direct
8. Stochastic 9. Population 20. Expressions
10. Constraints 11. Linear 19. Discrete

12. Multiobjective
14. Surrogate
Models

13. Sampling
Plans

15. Probabilistic
Surrogate Models

16. Surrogate
Optimization

17. Optimization under Uncertainty 18. Uncertainty Propagation

21. Multidisciplinary Design Optimization

Figure 1.9. Dependencies for the
chapters in Algorithms for Optimiza-
tion. Lighter arrows indicate weak
dependencies.

Chapter 2 begins by discussing derivatives and their generalization to multiple
dimensions. Derivatives are used in many algorithms to inform the choice of
direction of the search for an optimum. Often derivatives are not known analyti-
cally, and so we discuss how to estimate them numerically and using automatic
differentiation techniques.

Chapter 3 discusses bracketing, which involves identifying an interval in which
a local minimum lies for a univariate function. Different bracketing algorithms use
different schemes for successively shrinking the interval based on function evalua-
tions. One of the approaches we discuss uses knowledge of the Lipschitz constant
of the function to guide the bracketing process. These bracketing algorithms are
often used as subroutines within the optimization algorithms discussed later in
the text.

Chapter 4 introduces local descent as a general approach to optimizingmultivari-
ate functions. Local descent involves iteratively choosing a descent direction and
then taking a step in that direction and repeating that process until convergence
or some termination condition is met. There are different schemes for choosing
the step length. We will also discuss methods that adaptively restrict the step size
to a region where there is confidence in the local model.
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Chapter 5 builds upon the previous chapter, explaining how to use first-order
information obtained through the gradient estimate as a local model to inform
the descent direction. Simply stepping in the direction of steepest descent is often
not the best strategy for finding a minimum. This chapter discusses a wide variety
of different methods for using the past sequence of gradient estimates to better
inform the search.

Chapter 6 shows how to use local models based on second-order approximations
to inform local descent. These models are based on estimates of the Hessian of
the objective function. The advantage of second-order approximations is that it
can inform both the direction and step size.

Chapter 7 presents a collection of direct methods for finding optima that avoid
using gradient information for informing the direction of search. We begin by
discussing methods that iteratively perform line search along a set of directions.
We then discuss pattern searchmethods that do not perform line search but rather
perform evaluations some step size away from the current point along a set of
directions. The step size is incrementally adapted as the search proceeds. Another
method uses a simplex that adaptively expands and contracts as it traverses the
design space in the apparent direction of improvement. Finally, we discuss a
method motivated by Lipschitz continuity to increase resolution in areas deemed
likely to contain the global minimum.

Chapter 8 introduces stochastic methods, where randomness is incorporated
into the optimization process. We show how stochasticity can improve some of
the algorithms discussed in earlier chapters, such as steepest descent and pattern
search. Some of themethods involve incrementally traversing the search space, but
others involve learning a probability distribution over the design space, assigning
greater weight to regions that are more likely to contain an optimum.

Chapter 9 discusses population methods, where a collection of points is used to
explore the design space. Having a large number of points distributed through the
space can help reduce the risk of becoming stuck in a local minimum. Population
methods generally rely upon stochasticity to encourage diversity in the population,
and they can be combined with local descent methods.

Chapter 10 introduces the notion of constraints in optimization problems. We
begin by discussing the mathematical conditions for optimality with constraints.
We then introduce methods for incorporating constraints into the optimization
algorithms discussed earlier through the use of penalty functions. We also discuss
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methods for ensuring that, if we start with a feasible point, the search will remain
feasible.

Chapter 11 makes the assumption that both the objective function and con-
straints are linear. Although linearity may appear to be a strong assumption, many
engineering problems can be framed as linear constrained optimization problems.
Several methods have been developed for exploiting this linear structure. This
chapter focuses on the simplex algorithm, which is guaranteed to result in a global
minimum.

Chapter 12 shows how to address the problem of multiobjective optimization,
where we have multiple objectives that we are trying to optimize simultaneously.
Engineering often involves a tradeoff between multiple objectives, and it is often
unclear how to prioritize different objectives. We discuss how to transform multi-
objective problems into scalar-valued objective functions so that we can use the
algorithms discussed in earlier chapters. We also discuss algorithms for finding
the set of design points that represent the best tradeoff between objectives.

Chapter 13 discusses how to create sampling plans consisting of points that
cover the design space. Random sampling of the design space often does not
provide adequate coverage. We discuss methods for ensuring uniform coverage
along each design dimension and methods for measuring and optimizing the
coverage of the space. In addition, we discuss quasi-random sequences that can
also be used to generate sampling plans.

Chapter 14 explains how to build surrogate models of the objective function.
Surrogate models are often used for problems where evaluating the objective
function is very expensive. An optimization algorithm can then use evaluations of
the surrogate model instead of the actual objective function to improve the design.
The evaluations can come from historical data, perhaps obtained through the
use of a sampling plan introduced in the previous chapter. We discuss different
types of surrogate models, how to fit them to data, and how to identify a suitable
surrogate model.

Chapter 15 introduces probabilistic surrogate models that allow us to quantify our
confidence in the predictions of the models. This chapter focuses on a particular
type of surrogate model called a Gaussian process. We show how to use Gaussian
processes for prediction, how to incorporate gradient measurements and noise,
and how to estimate some of the parameters governing the Gaussian process
from data.
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Chapter 16 shows how to use the probabilistic models from the previous
chapter to guide surrogate optimization. The chapter outlines several techniques
for choosing which design point to evaluate next. We also discuss how surrogate
models can be used to optimize an objective measure in a safe manner.

Chapter 17 explains how to perform optimization under uncertainty, relaxing the
assumptionmade in previous chapters that the objective function is a deterministic
function of the design variables. We discuss different approaches for representing
uncertainty, including set-based and probabilistic approaches, and explain how
to transform the problem to provide robustness to uncertainty.

Chapter 18 outlines approaches to uncertainty propagation, where known input
distributions are used to estimate statistical quantities associated with the output
distribution. Understanding the output distribution of an objective function is
important to optimization under uncertainty. We discuss a variety of approaches,
some based on mathematical concepts such as Monte Carlo, the Taylor series
approximation, orthogonal polynomials, and Gaussian processes. They differ in
the assumptions they make and the quality of their estimates.

Chapter 19 shows how to approach problems where the design variables are
constrained to be discrete. A common approach is to relax the assumption that the
variables are discrete, but this can result in infeasible designs. Another approach
involves incrementally adding linear constraints until the optimal point is discrete.
We also discuss branch and bound alongwith dynamic programming approaches,
both ofwhich guarantee optimality. The chapter alsomentions a population-based
method that often scales to large design spaces but does not provide guarantees.

Chapter 20 discusses how to search design spaces consisting of expressions
defined by a grammar. For many problems, the number of variables is unknown,
such as in the optimization of graphical structures or computer programs. We
outline several algorithms that account for the grammatical structure of the design
space to make the search more efficient.

Chapter 21 explains how to approachmultidisciplinary design optimization. Many
engineering problems involve complicated interactions between several disci-
plines, and optimizing disciplines individually may not lead to an optimal solu-
tion. This chapter discusses a variety of techniques for taking advantage of the
structure of multidisciplinary problems to reduce the effort required for finding
good designs.

The appendices contain supplementary material. Appendix A begins with a
short introduction to the Julia programming language, focusing on the concepts
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used to specify the algorithms listed in this book. Appendix B specifies a variety
of test functions used for evaluating the performance of different algorithms.
Appendix C covers mathematical concepts used in the derivation and analysis of
the optimization methods discussed in this text.

1.9 Summary

• Optimization in engineering is the process of finding the best system design
subject to a set of constraints.

• Optimization is concerned with finding global minima of a function.

• Minima occur where the gradient is zero, but zero-gradient does not imply
optimality.

1.10 Exercises

Exercise 1.1. Give an example of a function with a local minimum that is not a
global minimum.

Exercise 1.2. What is the minimum of the function f (x) = x3 − x?

Exercise 1.3. Does the first-order condition f ′(x) = 0 hold when x is the optimal
solution of a constrained problem?

Exercise 1.4. How many minima does f (x, y) = x2 + y, subject to x > y ≥ 1,
have?

Exercise 1.5. How many inflection points does x3 − 10 have?





2 Derivatives and Gradients

Optimization is concerned with finding the design point that minimizes (or
maximizes) an objective function. Knowing how the value of a function changes
as its input is varied is useful because it tells us in which direction we can move to
improve on previous points. The change in the value of the function is measured
by the derivative in one dimension and the gradient in multiple dimensions. This
chapter briefly reviews some essential elements from calculus.1 1 For a more comprehensive re-

view, see S. J. Colley, Vector Calcu-
lus, 4th ed. Pearson, 2011.

2.1 Derivatives

The derivative f ′(x) of a function f of a single variable x is the rate at which the
value of f changes at x. It is often visualized, as shown in figure 2.1, using the
tangent line to the graph of the function at x. The value of the derivative equals
the slope of the tangent line.

x

f (x)

Figure 2.1. The function f is drawn
in black and the tangent line to f (x)
is drawn in blue. The derivative of
f at x is the slope of the tangent
line.
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We can use the derivative to provide a linear approximation of the function
near x:

f (x + ∆x) ≈ f (x) + f ′(x)∆x (2.1)
The derivative is the ratio between the change in f and the change in x at the
point x:

f ′(x) =
∆ f (x)

∆x
(2.2)

which is the change in f (x) divided by the change in x as the step becomes
infinitesimally small as illustrated by figure 2.2.

h h h

Figure 2.2. The tangent line is ob-
tained by joining points with suffi-
ciently small step differences.The notation f ′(x) can be attributed to Lagrange. We also use the notation

created by Leibniz,
f ′(x) ≡ d f (x)

dx
(2.3)

which emphasizes the fact that the derivative is the ratio of the change in f to the
change in x at the point x.

The limit equation defining the derivative can be presented in three different
ways: the forward difference, the central difference, and the backward difference. Each
method uses an infinitely small step size h:

f ′(x) ≡ lim
h→0

f (x + h)− f (x)

h
︸ ︷︷ ︸

forward difference

= lim
h→0

f (x + h/2)− f (x− h/2)

h
︸ ︷︷ ︸

central difference

= lim
h→0

f (x)− f (x− h)

h
︸ ︷︷ ︸

backward difference

(2.4)

If f can be represented symbolically, symbolic differentiation can often provide
an exact analytic expression for f ′ by applying derivative rules from calculus. The
analytic expression can then be evaluated at any point x. The process is illustrated
in example 2.1.
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The implementation details of symbolic differentiation is outside the scope
of this text. Various software packages, such as SymEngine.jl in Julia and
SymPy in Python, provide implementations. Here we use SymEngine.jl to
compute the derivative of x2 + x/2− sin(x)/x.

julia> using SymEngine
julia> @vars x; # define x as a symbolic variable
julia> f = x^2 + x/2 - sin(x)/x;
julia> diff(f, x)
1/2 + 2*x + sin(x)/x^2 - cos(x)/x

Example 2.1. Symbolic differenti-
ation provides analytical deriva-
tives.

2.2 Derivatives in Multiple Dimensions

The gradient is the generalization of the derivative to multivariate functions. It
captures the local slope of the function, allowing us to predict the effect of taking
a small step from a point in any direction. Recall that the derivative is the slope
of the tangent line. The gradient points in the direction of steepest ascent of the
tangent hyperplane as shown in figure 2.3. A hyperplane in an n-dimensional
space is the set of points that satisfies

w1x1 + · · ·+ wnxn = b (2.5)

for some vector w and scalar b. A hyperplane has n− 1 dimensions.

Figure 2.3. Each component of the
gradient defines a local tangent
line. These tangent lines define the
local tangent hyperplane. The gra-
dient vector points in the direction
of greatest increase.

The gradient of f at x is written∇ f (x) and is a vector. Each component of that
vector is the partial derivative2 of f with respect to that component: 2 The partial derivative of a func-

tion with respect to a variable is
the derivative assuming all other
input variables are held constant.
It is denoted ∂ f /∂x.

∇ f (x) =
[

∂ f (x)
∂x1

,
∂ f (x)
∂x2

, . . . ,
∂ f (x)
∂xn

]

(2.6)

We use the convention that vectors written with commas are column vectors. For
example, we have [a, b, c] = [a b c]⊤. Example 2.2 shows how to compute the
gradient of a function at a particular point.

The Hessian of a multivariate function is a matrix containing all of the second
derivatives with respect to the input.3 The second derivatives capture information 3 The Hessian is symmetric only if

the second derivatives of f are all
continuous in a neighborhood of
the point at which it is being eval-
uated:

∂2 f

∂x1∂x2
=

∂2 f

∂x2∂x1

about the local curvature of the function.

∇2 f (x) =








∂2 f (x)
∂x1∂x1

∂2 f (x)
∂x1∂x2

· · · ∂2 f (x)
∂x1∂xn...

∂2 f (x)
∂xn∂x1

∂2 f (x)
∂xn∂x2

· · · ∂2 f (x)
∂xn∂xn








(2.7)
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Compute the gradient of f (x) = x1 sin(x2) + 1 at c = [2, 0].

f (x) = x1 sin(x2) + 1

∇ f (x) =

[
∂ f

∂x1
,

∂ f

∂x2

]

= [sin(x2), x1 cos(x2)]

∇ f (c) = [0, 2]

Example 2.2. Computing the gradi-
ent at a particular point.

The directional derivative∇s f (x) of amultivariate function f is the instantaneous
rate of change of f (x) as x is movedwith velocity s. The definition is closely related
to the definition of a derivative of a univariate function:4

4 Some texts require that s be a
unit vector. See, for example, G. B.
Thomas, Calculus and Analytic Ge-
ometry, 9th ed. Addison-Wesley,
1968.

∇s f (x) ≡ lim
h→0

f (x + hs)− f (x)

h
︸ ︷︷ ︸

forward difference

= lim
h→0

f (x + hs/2)− f (x− hs/2)

h
︸ ︷︷ ︸

central difference

= lim
h→0

f (x)− f (x− hs)

h
︸ ︷︷ ︸

backward difference

(2.8)

The directional derivative can be computed using the gradient of the function:

∇s f (x) = ∇ f (x)⊤s (2.9)

Another way to compute the directional derivative ∇s f (x) is to define g(α) ≡
f (x + αs) and then compute g′(0), as illustrated in example 2.3.

The directional derivative is highest in the gradient direction, and it is lowest
in the direction opposite the gradient. This directional dependence arises from
the dot product in the directional derivative’s definition and from the fact that
the gradient is a local tangent hyperplane.
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We wish to compute the directional derivative of f (x) = x1x2 at x = [1, 0] in
the direction s = [−1,−1]:

∇ f (x) =
[

∂ f
∂x1

,
∂ f
∂x2

]

= [x2, x1]

∇s f (x) = ∇ f (x)⊤s =
[

0 1
]
[

−1

−1

]

= −1

We can also compute the directional derivative as follows:

g(α) = f (x + αs) = (1− α)(−α) = α2 − α

g′(α) = 2α− 1

g′(0) = −1

Example 2.3. Computing a direc-
tional derivative.

1

α

f (α)

2.3 Numerical Differentiation

The process of estimating derivatives numerically is referred to as numerical
differentiation. Estimates can be derived in differentways from function evaluations.
This section discusses finite difference methods and the complex step method.5 5 For a more comprehensive treat-

ment of the topics discussed in the
remainder of this chapter, see A.
Griewank and A. Walther, Evaluat-
ing Derivatives: Principles and Tech-
niques of Algorithmic Differentiation,
2nd ed. SIAM, 2008.

2.3.1 Finite Difference Methods
As the name implies, finite difference methods compute the difference between two
values that differ by a finite step size. They approximate the derivative definitions
in equation (2.4) using small differences:

f ′(x) ≈ f (x + h)− f (x)

h
︸ ︷︷ ︸

forward difference

≈ f (x + h/2)− f (x− h/2)

h
︸ ︷︷ ︸

central difference

≈ f (x)− f (x− h)

h
︸ ︷︷ ︸

backward difference

(2.10)

Mathematically, the smaller the step size h, the better the derivative estimate.
Practically, values for h that are too small can result in numerical cancellation
errors. This effect is shown later in figure 2.4. Algorithm 2.1 provides implemen-
tations for these methods.
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diff_forward(f, x; h=sqrt(eps(Float64))) = (f(x+h) - f(x))/h
diff_central(f, x; h=cbrt(eps(Float64))) = (f(x+h/2) - f(x-h/2))/h
diff_backward(f, x; h=sqrt(eps(Float64))) = (f(x) - f(x-h))/h

Algorithm 2.1. Finite difference
methods for estimating the deriva-
tive of a function f at x with finite
difference h. The default step sizes
are the square root or cube root of
the machine precision for floating
point values. These step sizes bal-
ance machine round-off error with
step size error.

The eps function provides the
step size between 1.0 and the next
larger representable floating-point
value.

The finite difference methods can be derived using the Taylor expansion. We
will derive the forward difference derivative estimate, beginning with the Taylor
expansion of f about x:

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + · · · (2.11)

We can rearrange and solve for the first derivative:

f ′(x)h = f (x + h)− f (x)− f ′′(x)

2!
h2 − f ′′′(x)

3!
h3 − · · · (2.12)

f ′(x) =
f (x + h)− f (x)

h
− f ′′(x)

2!
h− f ′′′(x)

3!
h2 − · · · (2.13)

f ′(x) ≈ f (x + h)− f (x)

h
(2.14)

The forward difference approximates the true derivative for small h with
error dependent on f ′′(x)

2! h + f ′′′(x)
3! h2 + · · · . This error term is O(h), meaning the

forward difference has linear error as h approaches zero.6 6 Asymptotic notation is covered in
appendix C.The central difference method has an error term of O(h2).7 We can derive
7 J. H. Mathews and K.D. Fink, Nu-
merical Methods Using MATLAB,
4th ed. Pearson, 2004.

this error term using the Taylor expansion. The Taylor expansions about x for
f (x + h/2) and f (x− h/2) are:

f (x + h/2) = f (x) + f ′(x)
h

2
+

f ′′(x)

2!

(
h

2

)2

+
f ′′′(x)

3!

(
h

2

)3

+ · · · (2.15)

f (x− h/2) = f (x)− f ′(x)
h

2
+

f ′′(x)

2!

(
h

2

)2

− f ′′′(x)

3!

(
h

2

)3

+ · · · (2.16)

Subtracting these expansions produces:

f (x + h/2)− f (x− h/2) ≈ 2 f ′(x)
h

2
+

2

3!
f ′′′(x)

(
h

2

)3

(2.17)

We rearrange to obtain:

f ′(x) ≈ f (x + h/2)− f (x− h/2)

h
− f ′′′(x)h2

24
(2.18)

which shows that the approximation has quadratic error.
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2.3.2 Complex Step Method
We often run into the problem of needing to choose a step size h small enough
to provide a good approximation but not too small so as to lead to numerical
subtractive cancellation issues. The complex step method bypasses the effect of
subtractive cancellation by using a single function evaluation. We evaluate the
function once after taking a step in the imaginary direction.8 8 J. R. R.A. Martins, P. Sturdza, and

J. J. Alonso, ‘‘The Complex-Step
Derivative Approximation,’’ ACM
Transactions on Mathematical Soft-
ware, vol. 29, no. 3, pp. 245–262,
2003. Special care must be taken to
ensure that the implementation of
f properly supports complex num-
bers as input.

The Taylor expansion for an imaginary step is:

f (x + ih) = f (x) + ih f ′(x)− h2 f ′′(x)

2!
− ih3 f ′′′(x)

3!
+ · · · (2.19)

Taking only the imaginary component of each side produces a derivative approx-
imation:

Im( f (x + ih)) = h f ′(x)− h3 f ′′′(x)

3!
+ · · · (2.20)

⇒ f ′(x) =
Im( f (x + ih))

h
+ h2 f ′′′(x)

3!
− · · · (2.21)

=
Im( f (x + ih))

h
+ O(h2) as h→ 0 (2.22)

An implementation is provided by algorithm 2.2. The real part approximates f (x)

to within O(h2) as h→ 0:

Re( f (x + ih)) = f (x)− h2 f ′′(x)

2!
+ . . . (2.23)

⇒ f (x) = Re( f (x + ih)) + h2 f ′′(x)

2!
− · · · (2.24)

Thus, we can evaluate both f (x) and f ′(x) using a single evaluation of f with
complex arguments. Example 2.4 shows the calculations involved for estimating
the derivative of a function at a particular point. Algorithm 2.2 implements the
complex step method. Figure 2.4 compares the numerical error of the complex
step method to the forward and central difference methods as the step size is
varied.

diff_complex(f, x; h=1e-20) = imag(f(x + h*im)) / h Algorithm 2.2. The complex step
method for estimating the deriva-
tive of a function f at x with finite
difference h.
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Consider f (x) = sin(x2). The function value at x = π/2 is approximately
0.624266 and the derivative is π cos(π2/4) ≈ −2.45425. We can arrive at
this using the complex step method:
julia> f = x -> sin(x^2);
julia> v = f(π/2 + 0.001im);
julia> real(v) # f(x)
0.6242698144866649
julia> imag(v)/0.001 # f'(x)
-2.4542516170381785

Example 2.4. The complex step
method for estimating derivatives.
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Figure 2.4. A comparison of the
error in derivative estimate for the
function sin(x) at x = 1/2 as the
step size is varied. The linear error
of the forward difference method
and the quadratic error of the cen-
tral difference and complex meth-
ods can be seen by the constant
slopes on the right hand side. The
complex step method avoids the
subtractive cancellation error that
occurs when differencing two func-
tion evaluations that are close to-
gether.
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2.4 Automatic Differentiation

This section introduces algorithms for the numeric evaluation of derivatives of
functions specified by a computer program. Key to these automatic differentiation
techniques is the application of the chain rule:

d

dx
f (g(x)) =

d

dx
( f ◦ g)(x) =

d f

dg

dg

dx
(2.25)

A program is composed of elementary operations like addition, subtraction,
multiplication, and division.

Consider the function f (a, b) = ln(ab + max(a, 2)). If we want to compute the
partial derivative with respect to a at a point, we need to apply the chain rule
several times:9 9 We adopt the convention that

Boolean expressions like (2 < α)
are 1 if true and 0 if false.∂ f

∂a
=

∂

∂a
ln(ab + max(a, 2)) (2.26)

=
1

ab + max(a, 2)

∂

∂a
(ab + max(a, 2)) (2.27)

=
1

ab + max(a, 2)

[
∂(ab)

∂a
+

∂ max(a, 2)

∂a

]

(2.28)

=
1

ab + max(a, 2)

[(

b
∂a

∂a
+ a

∂b

∂a

)

+

(

(2 > a)
∂2

∂a
+ (2 < a)

∂a

∂a

)]

(2.29)

=
1

ab + max(a, 2)
[b + (2 < a)] (2.30)

This process can be automated through the use of a computational graph. A
computational graph represents a function where the nodes are operations and
the edges are input-output relations. The leaf nodes of a computational graph
are input variables or constants, and terminal nodes are values output by the
function. A computational graph is shown in figure 2.5.

There are two methods for automatically differentiating f using its computa-
tional graph. The forward accumulation method used by dual numbers traverses
the tree from inputs to outputs, whereas reverse accumulation requires a backwards
pass through the graph.

2.4.1 Forward Accumulation
Forward accumulation will automatically differentiate a function using a single for-
ward pass through the function’s computational graph. The method is equivalent



28 chapter 2. derivatives and gradients

c4lnc3+

c1

c2

×

b

a

max

2

Figure 2.5. The computational
graph for ln(ab + max(a, 2)).

to iteratively expanding the chain rule of the inner operation:

d f

dx
=

d f

dc4

dc4

dx
=

d f

dc4

(
dc4

dc3

dc3

dx

)

=
d f

dc4

(
dc4

dc3

(
dc3

dc2

dc2

dx
+

dc3

dc1

dc1

dx

))

(2.31)

To illustrate forward accumulation,we apply it to the example function f (a, b) =

ln(ab + max(a, 2)) to calculate the partial derivative at a = 3, b = 2 with respect
to a.

1. The procedure starts at the graph’s source nodes consisting of the function
inputs and any constant values. For each of these nodes, we note both the
value and the partial derivative with respect to our target variable, as shown
in figure 2.6.10 10 For compactness in this figure,

we use dot notation or Newton’s no-
tation for derivatives. For example,
if it is clear that we are taking the
derivative with respect to a, we can
write ∂b/∂a as ḃ.

2. Next we proceed down the tree, one node at a time, choosing as our next node
one whose inputs have already been computed. We can compute the value by
passing through the previous nodes’ values, and we can compute the local
partial derivative with respect to a using both the previous nodes’ values and
their partial derivatives. The calculations are shown in figure 2.7.

We end up with the correct result, f (3, 2) = ln 9 and ∂ f /∂a = 1/3. This was
done using one pass through the computational graph.

This process can be conveniently automated by a computer using a program-
ming language which has overridden each operation to produce both the value
and its derivative. Such pairs are called dual numbers.
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a = 3

ȧ = 1

b = 2

ḃ = 0

Figure 2.6. The computational
graph for ln(ab + max(a, 2)) being
set up for forward accumulation
to calculate ∂ f /∂a with a = 3 and
b = 2.
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b = 2

ḃ = 0
c1 = a× b = 6

ċ1 = bȧ + aḃ = 2

c2 = max(a, 2) = 3

ċ2 =







0 if 2 > a

ȧ if 2 < a
= 1

c3 = c1 + c2 = 9

ċ3 = ċ1 + ċ2 = 3

c4 = ln c3 = ln 9

ċ4 = ċ3/c3 = 1
3

Figure 2.7. The computational
graph for ln(ab + max(a, 2)) after
forward accumulation is applied
to calculate ∂ f /∂a with a = 3 and
b = 2.
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Dual numbers can be expressed mathematically by including the abstract
quantity ǫ, where ǫ2 is defined to be 0. Like a complex number, a dual number is
written a + bǫ where a and b are both real values. We have:

(a + bǫ) + (c + dǫ) = (a + c) + (b + d)ǫ (2.32)
(a + bǫ)× (c + dǫ) = (ac) + (ad + bc)ǫ (2.33)

In fact, by passing a dual number into any smooth function f , we get the evaluation
and its derivative. We can show this using the Taylor series:

f (x) =
∞

∑
k=0

f (k)(a)

k!
(x− a)k (2.34)

f (a + bǫ) =
∞

∑
k=0

f (k)(a)

k!
(a + bǫ− a)k (2.35)

=
∞

∑
k=0

f (k)(a)bkǫk

k!
(2.36)

= f (a) + b f ′(a)ǫ + ǫ2
∞

∑
k=2

f (k)(a)bk

k!
ǫ(k−2) (2.37)

= f (a) + b f ′(a)ǫ (2.38)

Example 2.5 shows an implementation.

2.4.2 Reverse Accumulation
Forward accumulation requires n passes in order to compute an n-dimensional
gradient. Reverse accumulation11 requires only a single run in order to compute a 11 S. Linnainmaa, ‘‘The Representa-

tion of the Cumulative Rounding
Error of an Algorithm as a Taylor
Expansion of the Local Rounding
Errors,’’ Master’s thesis, University
of Helsinki, 1970.

complete gradient but requires two passes through the graph: a forward passduring
which necessary intermediate values are computed and a backward pass which
computes the gradient. Reverse accumulation is often preferred over forward
accumulation when gradients are needed, though care must be taken on memory-
constrained systems when the computational graph is very large.12 12 Reverse accumulation is central

to the backpropagation algorithm
used to train neural networks. D. E.
Rumelhart, G. E. Hinton, and R. J.
Williams, ‘‘Learning Representa-
tions by Back-Propagating Errors,’’
Nature, vol. 323, pp. 533–536, 1986.

Like forward accumulation, reverse accumulation will compute the partial
derivative with respect to the chosen target variable but iteratively substitutes the
outer function instead:

d f

dx
=

d f

dc4

dc4

dx
=

(
d f

dc3

dc3

dc4

)
dc4

dx
=

((
d f

dc2

dc2

dc3
+

d f

dc1

dc1

dc3

)
dc3

dc4

)
dc4

dx
(2.39)
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Dual numbers can be implemented by defining a struct Dual that contains
two fields, the value v and the derivative ∂.

struct Dual
v
∂

end

Wemust then implementmethods for each of the base operations required.
These methods take in dual numbers and produce new dual numbers using
that operation’s chain rule logic.

Base.:+(a::Dual, b::Dual) = Dual(a.v + b.v, a.∂ + b.∂)
Base.:*(a::Dual, b::Dual) = Dual(a.v * b.v, a.v*b.∂ + b.v*a.∂)
Base.log(a::Dual) = Dual(log(a.v), a.∂/a.v)
function Base.max(a::Dual, b::Dual)

v = max(a.v, b.v)
∂ = a.v > b.v ? a.∂ : a.v < b.v ? b.∂ : NaN
return Dual(v, ∂)

end
function Base.max(a::Dual, b::Int)

v = max(a.v, b)
∂ = a.v > b ? a.∂ : a.v < b ? 0 : NaN
return Dual(v, ∂)

end

The ForwardDiff.jl package supports an extensive set of mathematical
operations and additionally provides gradients and Hessians.
julia> using ForwardDiff
julia> a = ForwardDiff.Dual(3,1);
julia> b = ForwardDiff.Dual(2,0);
julia> log(a*b + max(a,2))
Dual{Nothing}(2.1972245773362196,0.3333333333333333)

Example 2.5. An implementation
of dual numbers allows for auto-
matic forward accumulation.
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This process is the reverse pass, the evaluation of which requires intermediate
values that are obtained during a forward pass.

Reverse accumulation can be implemented through operation overloading13 in a 13 Operation overloading refers
to providing implementations
for common operations such as
+, −, or = for custom variable
types. Overloading is discussed in
appendix A.2.5.

similar manner to the way dual numbers are used to implement forward accumu-
lation. Two functions must be implemented for each fundamental operation: a
forward operation that overloads the operation to store local gradient information
during the forward pass and a backward operation that uses the information to
propagate the gradient backwards. Packages like Tensorflow14 or Zygote.jl can

14 Tensorflow is an open source soft-
ware library for numerical compu-
tation using data flow graphs and
is often used for deep learning ap-
plications. It may be obtained from
tensorflow.org.

automatically construct the computational graph and the associated forward and
backwards pass operations. Example 2.6 shows how Zygote.jl can be used.

The Zygote.jl package provides automatic differentiation in the form of
reverse-accumulation. Here the gradient function is used to automatically
generate the backwards pass through the source code of f to obtain the
gradient.

julia> import Zygote: gradient
julia> f(a, b) = log(a*b + max(a,2));
julia> gradient(f, 3.0, 2.0)
(0.3333333333333333, 0.3333333333333333)

Example 2.6. Automatic differenti-
ation using the Zygote.jl package.
We find that the gradient at [3, 2] is
[1/3, 1/3].

2.5 Summary

• Derivatives are useful in optimization because they provide information about
how to change a given point in order to improve the objective function.

• For multivariate functions, various derivative-based concepts are useful for
directing the search for an optimum, including the gradient, the Hessian, and
the directional derivative.

• One approach to numerical differentiation includes finite difference approxi-
mations.

• The complex step method can eliminate the effect of subtractive cancellation
error when taking small steps, resulting in high quality gradient estimates.

• Analytic differentiation methods include forward and reverse accumulation
on computational graphs.
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2.6 Exercises

Exercise 2.1. Adopt the forward difference method to approximate the Hessian
of f (x) using its gradient, ∇ f (x).

Exercise 2.2. What is a drawback of the central difference method over other
finite difference methods if we already know f (x)?

Exercise 2.3. Compute the gradient of f (x) = ln x + ex + 1
x for a point x close to

zero. What term dominates in the expression?

Exercise 2.4. Suppose f (x) is a real-valued function that is also defined for com-
plex inputs. If f (3 + ih) = 2 + 4ih, what is f ′(3)?

Exercise 2.5. Draw the computational graph for f (x, y) = sin(x + y2). Use the
computational graph with forward accumulation to compute ∂ f /∂y at (x, y) =

(1, 1). Label the intermediate values and partial derivatives as they are propagated
through the graph.

Exercise 2.6. Combine the forward and backward difference methods to obtain
a difference method for estimating the second-order derivative of a function f at
x using three function evaluations.





3 Bracketing

This chapter presents a variety of bracketing methods for univariate functions,
or functions involving a single variable. Bracketing is the process of identifying
an interval in which a local minimum lies and then successively shrinking the
interval. For many functions, derivative information can be helpful in directing
the search for an optimum, but, for some functions, this information may not be
available or might not exist. This chapter outlines a wide variety of approaches
that leverage different assumptions. Later chapters that consider multivariate
optimization will build upon the concepts introduced here.

3.1 Unimodality

Several of the algorithms presented in this chapter assume unimodality of the
objective function. A unimodal function f is one where there is a unique x∗, such
that f is monotonically decreasing for x ≤ x∗ and monotonically increasing for
x ≥ x∗. It follows from this definition that the unique global minimum is at x∗,
and there are no other local minima.1 1 It is perhaps more conventional to

define unimodal functions in the
opposite sense, such that there is
a unique global maximum rather
than a minimum. However, in this
text, we try to minimize functions,
and so we use the definition in this
paragraph.

Given a unimodal function,we can bracket an interval [a, c] containing the global
minimum if we can find three points a < b < c, such that f (a) > f (b) < f (c).
Figure 3.1 shows an example.

3.2 Finding an Initial Bracket

When optimizing a function, we often start by first bracketing an interval con-
taining a local minimum. We then successively reduce the size of the bracketed
interval to converge on the local minimum. A simple procedure (algorithm 3.1)
can be used to find an initial bracket. Starting at a given point, we take a step
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a b c

Figure 3.1. Three points shown
bracketing a minimum.

in the positive direction. The distance we take is a hyperparameter to this algo-
rithm,2 but the algorithm provided defaults it to 1× 10−2. We then search in the

2 A hyperparameter is a parameter
that governs the function of an al-
gorithm. It can be set by an expert
or tuned using an optimization al-
gorithm.Many of the algorithms in
this text have hyperparameters.We
often provide default values sug-
gested in the literature. The success
of an algorithm can be sensitive to
the choice of hyperparameter.

downhill direction to find a new point that exceeds the lowest point. With each
step, we expand the step size by some factor, which is another hyperparameter
to this algorithm that is often set to 2. An example is shown in figure 3.2. Func-
tions without local minima, such as exp(x), cannot be bracketed and will cause
bracket_minimum to fail.

function bracket_minimum(f, x=0; s=1e-2, k=2.0)
a, ya = x, f(x)
b, yb = a + s, f(a + s)
if yb > ya

a, b = b, a
ya, yb = yb, ya
s = -s

end
while true

c, yc = b + s, f(b + s)
if yc > yb

return a < c ? (a, c) : (c, a)
end
a, ya, b, yb = b, yb, c, yc
s *= k

end
end

Algorithm 3.1. An algorithm for
bracketing an interval in which a
local minimum must exist. It takes
as input a univariate function f and
starting position x, which defaults
to 0. The starting step size s and
the expansion factor k can be spec-
ified. It returns a tuple containing
the new interval [a, b].
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Figure 3.2. An example of run-
ning bracket_minimum on a func-
tion. The method reverses direc-
tion between the first and second
iteration and then expands until
a minimum is bracketed in the
fourth iteration.

3.3 Fibonacci Search

Suppose we have a unimodal f bracketed by the interval [a, b]. Given a limit
on the number of times we can query the objective function, Fibonacci search
(algorithm 3.2) is guaranteed to maximally shrink the bracketed interval.

Suppose we can query f only twice. If we query f on the one-third and two-
third points on the interval, then we are guaranteed to remove one-third of our
interval, regardless of f , as shown in figure 3.3.

1 2

new interval if y1 < y2

new interval if y1 > y2

Figure 3.3. Our initial guess for two
queries will remove one-third of
the initial interval.

We can guarantee a tighter bracket by moving our guesses toward the center.
In the limit as ǫ→ 0, we are guaranteed to shrink our guess by a factor of two as
shown in figure 3.4.

ǫ

new interval if y1 < y2

new interval if y1 > y2

Figure 3.4. The most we can guar-
antee to shrink our interval is by
just under a factor of two.
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With three queries, we can shrink the interval by a factor of three. We first
query f on the one-third and two-third points on the interval, discard one-third of
the interval, and then sample just next to the better sample as shown in figure 3.5.

1 2

3

Figure 3.5. With three queries we
can shrink the domain by a factor
of three. The third query is made
based on the result of the first two
queries.

For n queries, the length of the intervals are related to the Fibonacci sequence:
1, 1, 2, 3, 5, 8, and so forth. The first two terms are one, and the following terms
are always the sum of the previous two:

Fn =







1 if n ≤ 2

Fn−1 + Fn−2 otherwise
(3.1)

Figure 3.6 shows the relationship between the intervals. Example 3.1 walks
through an application to a univariate function.

I1 = I2 + I3 = 8I5

I2 = I3 + I4 = 5I5

I3 = I4 + I5 = 3I5

I4 = 2I5

I5

Figure 3.6. For n queries we are
guaranteed to shrink our interval
by a factor of Fn+1. The length of ev-
ery interval constructed during Fi-
bonacci search can be expressed in
terms of the final interval times a Fi-
bonacci number. If the final, small-
est interval has length In, then the
second smallest interval has length
In−1 = F2 In, the third smallest in-
terval has length In−2 = F3 In, and
so forth.

The Fibonacci sequence can be determined analytically using Binet’s formula:

Fn =
ϕn − (1− ϕ)n

√
5

, (3.2)

where ϕ = (1 +
√

5)/2 ≈ 1.61803 is the golden ratio.
The ratio between successive values in the Fibonacci sequence is:

Fn

Fn−1
= ϕ

1− sn+1

1− sn
(3.3)

where s = (1−
√

5)/(1 +
√

5) ≈ −0.382.
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function fibonacci_search(f, a, b, n; ϵ=0.01)
s = (1-√5)/(1+√5)
ρ = 1 / (φ*(1-s^(n+1))/(1-s^n))
d = ρ*b + (1-ρ)*a
yd = f(d)
for i in 1 : n-1

if i == n-1
c = ϵ*a + (1-ϵ)*d

else
c = ρ*a + (1-ρ)*b

end
yc = f(c)
if yc < yd

b, d, yd = d, c, yc
else

a, b = b, c
end
ρ = 1 / (φ*(1-s^(n-i+1))/(1-s^(n-i)))

end
return a < b ? (a, b) : (b, a)

end

Algorithm 3.2. Fibonacci search
to be run on univariate function f,
with bracketing interval [a, b], for
n > 1 function evaluations. It re-
turns the new interval (a, b). The
optional parameter ϵ controls the
lowest-level interval.

3.4 Golden Section Search

If we take the limit for large n, we see that the ratio between successive values of
the Fibonacci sequence approaches the golden ratio:

lim
n→∞

Fn

Fn−1
= ϕ. (3.4)

Golden section search (algorithm3.3) uses the golden ratio to approximate Fibonacci
search. Figure 3.7 shows the relationship between the intervals. Figures 3.8 and 3.9
compare Fibonacci search with golden section search on unimodal and non-
unimodal functions, respectively.
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Consider using Fibonacci search with five function evaluations to minimize
f (x) = exp(x− 2)− x over the interval [a, b] = [−2, 6]. The first two function
evaluations aremade at F5

F6
and 1− F5

F6
, along the length of the initial bracketing

interval:

f (x(1)) = f

(

a + (b− a)

(

1− F5

F6

))

= f (1) = −0.632

f (x(2)) = f

(

a + (b− a)
F5

F6

)

= f (3) = −0.282

The evaluation at x(1) is lower, yielding the new interval [a, b] = [−2, 3].
Two evaluations are needed for the next interval split:

xleft = a + (b− a)

(

1− F4

F5

)

= 0

xright = a + (b− a)
F4

F5
= 1

A third function evaluation is thus made at xleft, as xright has already been
evaluated:

f (x(3)) = f (0) = 0.135

The evaluation at x(1) is lower, yielding the new interval [a, b] = [0, 3].
Two evaluations are needed for the next interval split:

xleft = a + (b− a)

(

1− F3

F4

)

= 1

xright = a + (b− a)
F3

F4
= 2

A fourth functional evaluation is thus made at xright, as xleft has already
been evaluated:

f (x(4)) = f (2) = −1

The new interval is [a, b] = [1, 3]. A final evaluation is made just next to
the center of the interval at 2 + ǫ, and it is found to have a slightly higher
value than f (2). The final interval is [1, 2 + ǫ].

Example 3.1. Using Fibonacci
search with five function evalua-
tions to optimize a univariate func-
tion.
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I1

I2 = I1 ϕ−1

I3 = I1 ϕ−2

I4 = I1 ϕ−3

I5 = I1 ϕ−4

Figure 3.7. For n queries of a uni-
variate function we are guaranteed
to shrink a bracketing interval by a
factor of ϕn−1.

function golden_section_search(f, a, b, n)
ρ = φ-1
d = ρ * b + (1 - ρ)*a
yd = f(d)
for i = 1 : n-1

c = ρ*a + (1 - ρ)*b
yc = f(c)
if yc < yd

b, d, yd = d, c, yc
else

a, b = b, c
end

end
return a < b ? (a, b) : (b, a)

end

Algorithm 3.3. Golden section
search to be run on a univariate
function f, with bracketing inter-
val [a, b], for n > 1 function eval-
uations. It returns the new inter-
val (a, b). Julia already has the
golden ratio φ defined. Guaran-
teeing convergence to within ǫ re-
quires n = (b − a)/(ǫ ln ϕ) itera-
tions.
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Fibonacci Search

x x
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x x

Golden Section Search
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Figure 3.8. Fibonacci and golden
section search on a unimodal func-
tion.

x

y

x x

Fibonacci Search

x x

x

y

x x

Golden Section Search

x x

Figure 3.9. Fibonacci and golden
section search on a nonunimodal
function.
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3.5 Quadratic Fit Search

Quadratic fit search leverages our ability to analytically solve for the minimum
of a quadratic function. Many local minima look quadratic when we zoom in
close enough. Quadratic fit search iteratively fits a quadratic function to three
bracketing points, solves for the minimum, chooses a new set of bracketing points,
and repeats as shown in figure 3.10.

x

y

Figure 3.10. Quadratic fit search fits
a quadratic function to three brack-
eting points (black dots) and uses
the analytic minimum (blue dot)
to determine the next set of brack-
eting points.

Given bracketing points a < b < c, we wish to find the coefficients p1, p2, and
p3 for the quadratic function q that goes through (a, ya), (b, yb), and (c, yc):

q(x) = p1 + p2x + p3x2 (3.5)
ya = p1 + p2a + p3a2 (3.6)
yb = p1 + p2b + p3b2 (3.7)
yc = p1 + p2c + p3c2 (3.8)

In matrix form, we have





ya

yb

yc




 =






1 a a2

1 b b2

1 c c2











p1

p2

p3




 (3.9)

We can solve for the coefficients through matrix inversion:





p1

p2

p3




 =






1 a a2

1 b b2

1 c c2






−1 




ya

yb

yc




 (3.10)

Our quadratic function is then

q(x) = ya
(x− b)(x− c)

(a− b)(a− c)
+ yb

(x− a)(x− c)

(b− a)(b− c)
+ yc

(x− a)(x− b)

(c− a)(c− b)
(3.11)

We can solve for the unique minimum by finding where the derivative is zero:

x∗ =
1

2

ya(b2 − c2) + yb(c
2 − a2) + yc(a2 − b2)

ya(b− c) + yb(c− a) + yc(a− b)
(3.12)

Quadratic fit search is typically faster than golden section search. It may need
safeguards for cases where the next point is very close to other points. A basic
implementation is provided in algorithm 3.4. Figure 3.11 shows several iterations
of the algorithm.
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function quadratic_fit_search(f, a, b, c, n)
ya, yb, yc = f(a), f(b), f(c)
for i in 1:n-3

x = 0.5*(ya*(b^2-c^2)+yb*(c^2-a^2)+yc*(a^2-b^2)) /
(ya*(b-c) +yb*(c-a) +yc*(a-b))

yx = f(x)
if x > b

if yx > yb
c, yc = x, yx

else
a, ya, b, yb = b, yb, x, yx

end
elseif x < b

if yx > yb
a, ya = x, yx

else
c, yc, b, yb = b, yb, x, yx

end
end

end
return (a, b, c)

end

Algorithm 3.4. Quadratic fit search
to be run on univariate function f,
with bracketing interval [a, c] with
a < b < c. The method will run for
n function evaluations. It returns
the new bracketing values as a tu-
ple, (a, b, c).

a b c

x

y

a b c

x

a b c

x

a b c

x

Figure 3.11. Four iterations of the
quadratic fit method.
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3.6 Shubert-Piyavskii Method

In contrast with previous methods in this chapter, the Shubert-Piyavskii method3 3 S. Piyavskii, ‘‘An Algorithm for
Finding the Absolute Extremum
of a Function,’’ USSR Computa-
tional Mathematics and Mathemati-
cal Physics, vol. 12, no. 4, pp. 57–67,
1972. B.O. Shubert, ‘‘A Sequential
Method Seeking the Global Maxi-
mum of a Function,’’ SIAM Journal
on Numerical Analysis, vol. 9, no. 3,
pp. 379–388, 1972.

is a global optimization method over a domain [a, b], meaning it is guaranteed to
converge on the global minimum of a function irrespective of any local minima
or whether the function is unimodal. A basic implementation is provided by
algorithm 3.5.

The Shubert-Piyavskii method requires that the function be Lipschitz continuous,
meaning that it is continuous and there is an upper bound on the magnitude of
its derivative. A function f is Lipschitz continuous on [a, b] if there exists an ℓ > 0

such that:4 4 We can extend the definition of
Lipschitz continuity to multivari-
ate functions, where x and y are
vectors and the absolute value is
replaced by any vector norm.

| f (x)− f (y)| ≤ ℓ|x− y| for all x, y ∈ [a, b] (3.13)
Intuitively, ℓ is as large as the largest unsigned instantaneous rate of change
the function attains on [a, b]. Given a point (x0, f (x0)), we know that the lines
f (x0)− ℓ(x− x0) for x > x0 and f (x0) + ℓ(x− x0) for x < x0 form a lower bound
of f .

The Shubert-Piyavskii method iteratively builds a tighter and tighter lower
bound on the function. Given a valid Lipschitz constant ℓ, the algorithm begins by
sampling the midpoint, x(1) = (a + b)/2. A sawtooth lower bound is constructed
using lines of slope ±ℓ from this point. These lines will always lie below f if ℓ is
a valid Lipschitz constant as shown in figure 3.12.

a x(1) b

L

1

x

y

f (x)

lower bound
Figure 3.12. The first iteration of the
Shubert-Piyavskii method.

Upper vertices in the sawtooth correspond to sampled points. Lower vertices
correspond to intersections between the Lipschitz lines originating from each
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sampled point. Further iterations find the minimum point in the sawtooth, evalu-
ate the function at that x value, and then use the result to update the sawtooth.
Figure 3.13 illustrates this process.

a = x(2) x(1) x(4) b = x(3)

x

y

f (x)

lower bound
Figure 3.13. Updating the lower
bound involves sampling a new
point and intersecting the new
lines with the existing sawtooth.

The algorithm is typically stopped when the difference in height between the
minimum sawtooth value and the function evaluation at that point is less than
a given tolerance ǫ. For the minimum peak (x(n), y(n)) and function evaluation
f (x(n)), we thus terminate if y(n) − f (x(n)) < ǫ.

The regions inwhich theminimum could lie can be computed using this update
information. For every peak, an uncertainty region can be computed according
to: [

x(i) − 1

ℓ
( f (xmin)− y(i)), x(i) +

1

ℓ
(y(i) − ymin)

]

(3.14)

for each sawtooth lower vertex (x(i), y(i)) and theminimum sawtooth upper vertex
(xmin, ymin). A point will contribute an uncertainty region only if y(i) < ymin. The
minimum is located in one of these peak uncertainty regions.

Themain drawback of the Shubert-Piyavskii method is that it requires knowing
a valid Lipschitz constant. Large Lipschitz constants will result in poor lower
bounds. Figure 3.14 shows several iterations of the Shubert-Piyavskii method.
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struct Pt
x
y

end
function _get_sp_intersection(A, B, l)

t = ((A.y - B.y) - l*(A.x - B.x)) / 2l
return Pt(A.x + t, A.y - t*l)

end
function shubert_piyavskii(f, a, b, l, ϵ, δ=0.01)

m = (a+b)/2
A, M, B = Pt(a, f(a)), Pt(m, f(m)), Pt(b, f(b))
pts = [A, _get_sp_intersection(A, M, l),

M, _get_sp_intersection(M, B, l), B]
Δ = Inf
while Δ > ϵ

i = argmin([P.y for P in pts])
P = Pt(pts[i].x, f(pts[i].x))
Δ = P.y - pts[i].y

P_prev = _get_sp_intersection(pts[i-1], P, l)
P_next = _get_sp_intersection(P, pts[i+1], l)

deleteat!(pts, i)
insert!(pts, i, P_next)
insert!(pts, i, P)
insert!(pts, i, P_prev)

end

intervals = []
i = 2*(argmin([P.y for P in pts[1:2:end]])) - 1
for j in 2:2:length(pts)

if pts[j].y < pts[i].y
dy = pts[i].y - pts[j].y
x_lo = max(a, pts[j].x - dy/l)
x_hi = min(b, pts[j].x + dy/l)
if !isempty(intervals) && intervals[end][2] + δ ≥ x_lo

intervals[end] = (intervals[end][1], x_hi)
else

push!(intervals, (x_lo, x_hi))
end

end
end
return (pts[i], intervals)

end

Algorithm 3.5. The Shubert-
Piyavskii method to be run on
univariate function f, with brack-
eting interval a < b and Lipschitz
constant l. The algorithm runs
until the update is less than the
tolerance ϵ. Both the best point
and the set of uncertainty intervals
are returned. The uncertainty
intervals are returned as an array
of (a,b) tuples. The parameter δ
is a tolerance used to merge the
uncertainty intervals.
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y

y

x

y

x x

Figure 3.14. Nine iterations of the
Shubert-Piyavskiimethod proceed-
ing left to right and top to bot-
tom. The blue lines are uncertainty
regions in which the global mini-
mum could lie.
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3.7 Bisection Method

The bisectionmethod (algorithm 3.6) can be used to find roots of a function, or points
where the function is zero. Such root-finding methods can be used for optimization
by applying them to the derivative of the objective, locating where f ′(x) = 0. In
general, we must ensure that the resulting points are indeed local minima.

The bisection method maintains a bracket [a, b] in which at least one root is
known to exist. If f is continuous on [a, b], and there is some y ∈ [ f (a), f (b)], then
the intermediate value theorem stipulates that there exists at least one x ∈ [a, b], such
that f (x) = y as shown in figure 3.15. It follows that a bracket [a, b] is guaranteed
to contain a zero if f (a) and f (b) have opposite signs.

a x b

f (a)
y

f (b)

Figure 3.15. A horizontal line
drawn from any y ∈ [ f (a), f (b)]
must intersect the graph at least
once.

The bisection method cuts the bracketed region in half with every iteration.
The midpoint (a + b)/2 is evaluated, and the new bracket is formed from the
midpoint and whichever side that continues to bracket a zero. We can terminate
immediately if the midpoint evaluates to zero. Otherwise we can terminate after
a fixed number of iterations. Figure 3.16 shows four iterations of the bisection
method. This method is guaranteed to converge within ǫ of x∗ within lg

( |b−a|
ǫ

)

iterations, where lg denotes the base 2 logarithm.

x

f′

x x x

Figure 3.16. Four iterations of the
bisection method. The horizontal
line corresponds to f ′(x) = 0. Note
that multiple roots exist within the
initial bracket.

x

f ′

Figure 3.17. A bracketing method
initialized such that it straddles the
two roots in this figure will expand
forever, never to find a sign change.
Also, if the initial interval is be-
tween the two roots, doubling the
interval can cause both ends of the
interval to simultaneously pass the
two roots.

Root-finding algorithms like the bisection method require starting intervals
[a, b] on opposite sides of a zero. That is, sign( f ′(a)) 6= sign( f ′(b)), or equiva-
lently, f ′(a) f ′(b) ≤ 0. Algorithm 3.7 provides a method for automatically de-
termining such an interval. It starts with a guess interval [a, b]. So long as the
interval is invalid, its width is increased by a constant factor. Doubling the in-
terval size is a common choice. This method will not always succeed as shown
in figure 3.17. Functions that have two nearby roots can be missed, causing the
interval to infinitely increase without termination.

The Brent-Dekker method is an extension of the bisection method. It is a root-
finding algorithm that combines elements of the secant method (section 6.2) and
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function bisection(f′, a, b, ϵ)
if a > b; a,b = b,a; end # ensure a < b

ya, yb = f′(a), f′(b)
if ya == 0; b = a; end
if yb == 0; a = b; end

while b - a > ϵ
x = (a+b)/2
y = f′(x)
if y == 0

a, b = x, x
elseif sign(y) == sign(ya)

a = x
else

b = x
end

end

return (a,b)
end

Algorithm 3.6. The bisection al-
gorithm, where f′ is the deriva-
tive of the univariate function we
seek to optimize. We have a < b
that bracket a zero of f′. The in-
terval width tolerance is ϵ. Calling
bisection returns the new brack-
eted interval [a, b] as a tuple.

The prime character ′ is not an
apostrophe. Thus, f′ is a variable
name rather than a transposed vec-
tor f. The symbol can be created by
typing \prime and hitting tab.

function bracket_sign_change(f′, a, b; k=2)
if a > b; a,b = b,a; end # ensure a < b

center, half_width = (b+a)/2, (b-a)/2
while f′(a)*f′(b) > 0

half_width *= k
a = center - half_width
b = center + half_width

end

return (a,b)
end

Algorithm 3.7. An algorithm for
finding an interval in which a sign
change occurs. The inputs are the
real-valued function f′ defined on
the real numbers, and starting in-
terval [a, b]. It returns the new in-
terval as a tuple by expanding the
interval width until there is a sign
change between the function eval-
uated at the interval bounds. The
expansion factor k defaults to 2.
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inverse quadratic interpolation. It has reliable and fast convergence properties, and
it is the univariate optimization algorithm of choice in many popular numerical
optimization packages.5

5 The details of this algorithm can
be found in R. P. Brent, Algorithms
forMinimizationWithout Derivatives.
Prentice Hall, 1973. The algorithm
is an extension of the work by
T. J. Dekker, ‘‘Finding a Zero by
Means of Successive Linear Inter-
polation,’’ in Constructive Aspects
of the Fundamental Theorem of Alge-
bra, B. Dejon and P. Henrici, eds.,
Interscience, 1969.

3.8 Summary

• Many optimization methods shrink a bracketing interval, including Fibonacci
search, golden section search, and quadratic fit search.

• The Shubert-Piyavskii method outputs a set of bracketed intervals containing
the global minima, given the Lipschitz constant.

• Root-finding methods like the bisection method can be used to find where the
derivative of a function is zero.

3.9 Exercises

Exercise 3.1. Give an example of a problem when Fibonacci search is preferred
over the bisection method.

Exercise 3.2. What is a drawback of the Shubert-Piyavskii method?

Exercise 3.3. Give an example of a nontrivial function where quadratic fit search
would identify the minimum correctly once the function values at three distinct
points are available.

Exercise 3.4. Suppose we have f (x) = x2/2− x. Apply the bisection method to
find an interval containing the minimizer of f starting with the interval [0, 1000].
Execute three steps of the algorithm.

Exercise 3.5. Suppose we have a function f (x) = (x + 2)2 on the interval [0, 1].
Is 2 a valid Lipschitz constant for f on that interval?

Exercise 3.6. Suppose we have a unimodal function defined on the interval [1, 32].
After three function evaluations of our choice, will we be able to narrow the
optimum to an interval of at most length 10? Why or why not?





4 Local Descent

Up to this point, we have focused on optimization involving a single design
variable. This chapter introduces a general approach to optimization involving
multivariate functions, or functions with more than one variable. The focus of this
chapter is on how to use local models to incrementally improve a design point
until some convergence criterion is met. We begin by discussing methods that,
at each iteration, choose a descent direction based on a local model and then
choose a step size. We then discuss methods that restrict the step to be within a
region where the local model is believed to be valid. This chapter concludes with
a discussion of convergence conditions. The next two chapters will discuss how
to use first- and second-order models built from gradient or Hessian information.

4.1 Descent Direction Iteration

A common approach to optimization is to incrementally improve a design point
x by taking a step that minimizes the objective value based on a local model. The
local model may be obtained, for example, from a first- or second-order Taylor
approximation. Optimization algorithms that follow this general approach are
referred to as descent direction methods. They start with a design point x(1) and
then generate a sequence of points, sometimes called iterates, to converge to a
local minimum.1 1 The choice of x(1) can affect the

success of the algorithm in find-
ing a minimum. Domain knowl-
edge is often used to choose a rea-
sonable value. When that is not
available, we can search over the
design space using the techniques
that will be covered in chapter 13.

The iterative descent direction procedure involves the following steps:

1. Check whether x(k) satisfies the termination conditions. If it does, terminate;
otherwise proceed to the next step.

2. Determine the descent direction d(k) using local information such as the gradient
or Hessian. Some algorithms assume ‖d(k)‖ = 1, but others do not.
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3. Determine the step size or learning rate α(k). Some algorithms attempt to
optimize the step size so that the step maximally decreases f .2 2 We use step size to refer to the

magnitude of the overall step. Ob-
taining a new iterate using equa-
tion (4.1) with a step size α(k) im-
plies that the descent direction d(k)

has unit length. We use learning
rate to refer to a scalar multiple
used on a descent direction vec-
torwhich does not necessarily have
unit length.

4. Compute the next design point according to:

x(k+1) ← x(k) + α(k)d(k) (4.1)

There are many different optimization methods, each with their own ways of
determining α and d.

4.2 Line Search

For the moment, assume we have chosen a descent direction d, perhaps using one
of the methods discussed in one of the subsequent chapters. We need to choose
the step factor α to obtain our next design point. One approach is to use line search,
which selects the step factor that minimizes the one-dimensional function:

minimize
α

f (x + αd) (4.2)

Line search is a univariate optimization problem, which was covered in chapter 3.
We can apply the univariate optimization method of our choice.3 To inform the

3 The Brent-Dekker method, men-
tioned in the previous chapter, is
a commonly used univariate op-
timization method. It combines
the robustness of the bisection
method with the speed of the se-
cant method.

search, we can use the derivative of the line search objective, which is simply the
directional derivative along d at x+ αd. Line search is demonstrated in example 4.1
and implemented in algorithm 4.1.

function line_search(f, x, d)
objective = α -> f(x + α*d)
a, b = bracket_minimum(objective)
α = minimize(objective, a, b)
return x + α*d

end

Algorithm 4.1. A method for con-
ducting a line search, which finds
the optimal step factor along a
descent direction d from design
point x to minimize function f.
The minimize function can be im-
plemented using a univariate op-
timization algorithm such as the
Brent-Dekker method.

One disadvantage of conducting a line search at each step is the computational
cost of optimizing α to a high degree of precision. Instead, it is common to quickly
find a reasonable value and then move on, selecting x(k+1), and then picking a
new direction d(k+1).
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Some algorithms use a fixed step factor. Large steps will tend to result in faster
convergence but risk overshooting the minimum. Smaller steps tend to be more
stable but can result in slower convergence. A fixed step factor α is sometimes
referred to as a learning rate.

Another method is to use a decaying step factor:

α(k) = α(1)γk−1 for γ ∈ (0, 1] (4.3)

Decaying step factors are especially popular when minimizing noisy objective
functions,4 and are commonly used in machine learning applications.

4 We will discuss optimization in
the presence of noise and other
forms of uncertainty in chapter 17.

Consider conducting a line search on f (x1, x2, x3) = sin(x1x2) + exp(x2 +

x3)− x3 from x = [1, 2, 3] in the direction d = [0,−1,−1]. The corresponding
optimization problem is:

minimize
α

sin((1 + 0α)(2− α)) + exp((2− α) + (3− α))− (3− α)

which simplifies to:

minimize
α

sin(2− α) + exp(5− 2α) + α− 3

The minimum is at α ≈ 3.127 with x ≈ [1,−1.126,−0.126].

Example 4.1. Line search used to
minimize a function along a de-
scent direction.
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4.3 Approximate Line Search

It is often more computationally efficient to perform more iterations of a descent
method than to do exact line search at each iteration, especially if the function
and derivative calculations are expensive. Many of the methods discussed so far
can benefit from using approximate line search to find a suitable step size with a
small number of evaluations. Since descent methods must descend, a step size α

may be suitable if it causes a decrease in the objective function value. However, a
variety of other conditions may be enforced to encourage faster convergence.

The condition for sufficient decrease5 requires that the step size cause a sufficient 5 This condition is sometimes re-
ferred to as the Armijo condition.decrease in the objective function value:

f (x(k+1)) ≤ f (x(k)) + βα∇d(k) f (x(k)) (4.4)
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with β ∈ [0, 1] often set to β = 1× 10−4. Figure 4.1 illustrates this condition. If
β = 0, then any decrease is acceptable. If β = 1, then the decrease has to be at
least as much as what would be predicted by a first-order approximation.

0

f (x) + βα∇d f (x)
f (x) + α∇d f (x)

f (x + αd)

sufficient decrease

α

y

Figure 4.1. The sufficient decrease
condition, the firstWolfe condition,
can always be satisfied by a suffi-
ciently small step size along a de-
scent direction.

If d is a valid descent direction, then there must exist a sufficiently small step
size that satisfies the sufficient decrease condition. We can thus start with a large
step size and decrease it by a constant reduction factor until the sufficient decrease
condition is satisfied. This algorithm is known as backtracking line search6 because

6 Also known as Armijo line search,
L. Armijo, ‘‘Minimization of Func-
tions Having Lipschitz Continu-
ous First Partial Derivatives,’’ Pa-
cific Journal of Mathematics, vol. 16,
no. 1, pp. 1–3, 1966.

of how it backtracks along the descent direction. Backtracking line search is shown
in figure 4.2 and implemented in algorithm 4.2. We walk through the procedure
in example 4.2.

function backtracking_line_search(f, ∇f, x, d, α; p=0.5, β=1e-4)
y, g = f(x), ∇f(x)
while f(x + α*d) > y + β*α*(g⋅d)

α *= p
end
α

end

Algorithm 4.2. The backtracking
line search algorithm, which takes
objective function f, its gradient
∇f, the current design point x, a
descent direction d, and the maxi-
mum step size α. We can optionally
specify the reduction factor p and
the first Wolfe condition parameter
β.

Note that the cdot character ⋅
aliases to the dot function such that
a⋅b is equivalent to dot(a,b). The
symbol can be created by typing
\cdot and hitting tab.

The first condition is insufficient to guarantee convergence to a local minimum.
Very small step sizes will satisfy the first condition but can prematurely converge.
Backtracking line search avoids premature convergence by accepting the largest
satisfactory step size obtained by sequential downscaling and is guaranteed to
converge to a local minimum.

Another condition, called the curvature condition, requires the directional deriva-
tive at the next iterate to be shallower:

∇d(k) f (x(k+1)) ≥ σ∇d(k) f (x(k)) (4.5)
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Figure 4.2. Backtracking line
search used on the Rosenbrock
function (appendix B.6). The black
lines show the seven iterations
taken by the descent method and
the red lines show the points con-
sidered during each line search.

where σ controls how shallow the next directional derivative must be. Figures 4.3
and 4.4 illustrate this condition. It is common to set β < σ < 1 with σ = 0.1 when
approximate linear search is used with the conjugate gradient method and to 0.9

when used with Newton’s method.7 7 The conjugate gradient method is
introduced in section 5.2, andNew-
ton’s method is introduced in sec-
tion 6.1.

An alternative to the curvature condition is the strong Wolfe condition, which is
a more restrictive criterion in that the slope is also required not to be too positive:

|∇d(k) f (x(k+1))| ≤ −σ∇d(k) f (x(k)) (4.6)

Figure 4.5 illustrates this condition.
Together, the sufficient decrease condition and the first curvature condition

form the Wolfe conditions. The sufficient decrease condition is often called the first
Wolfe condition and the curvature condition is called the second Wolfe condition.
The sufficient decrease condition with the second curvature condition form the
strong Wolfe conditions.

Satisfying the strong Wolfe conditions requires a more complicated algorithm,
strong backtracking line search (algorithm 4.3).8 The method operates in two phases. 8 J. Nocedal and S. J.Wright,Numer-

ical Optimization, 2nd ed. Springer,
2006.The first phase, the bracketing phase, tests successively larger step sizes to bracket

an interval [α(k−1), α(k)] guaranteed to contain step lengths satisfying the Wolfe
conditions.
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Consider approximate line search on f (x1, x2) = x2
1 + x1x2 + x2

2 from
x = [1, 2] in the direction d = [−1,−1], using a maximum step size of 10,
a reduction factor of 0.5, a first Wolfe condition parameter β = 1× 10−4, and
a second Wolfe condition parameter σ = 0.9.

We checkwhether themaximumstep size satisfies the firstWolfe condition,
where the gradient at x is g = [4, 5]:

f (x + d) ≤ f (x) + (g⊤d)

f ([1, 2] + 10 · [−1,−1]) ≤ 7 + 1× 10−4 · 10 · [4, 5]⊤[−1,−1]

217 ≤ 6.991

It is not satisifed.
The step size is multiplied by 0.5 to obtain 5, and the first Wolfe condition

is checked again:

f ([1, 2] + 5 · [−1,−1]) ≤ 7 + 1× 10−4 · 5 · [4, 5]⊤[−1,−1]

37 ≤ 6.996

It is not satisifed.
The step size is multiplied by 0.5 to obtain 2.5, and the firstWolfe condition

is checked again:

f ([1, 2] + 2.5 · [−1,−1]) ≤ 7 + 1× 10−4 · 2.5 · [4, 5]⊤[−1,−1]

3.25 ≤ 6.998

The first Wolfe condition is satisfied.
The candidate design point x′ = x + αd = [−1.5,−0.5] is checked against

the second Wolfe condition:

∇d f (x′) ≥ σ∇d f (x)

[−3.5,−2.5]⊤[−1,−1] ≥ σ [4, 5]⊤[−1,−1]

6 ≥ −8.1

The second Wolfe condition is satisfied.
Approximate line search terminates with x = [−1.5,−0.5].

Example 4.2. An example of back-
tracking line search, an approxi-
mate line search method.
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0

minimum of second-order approximation

α

y

Figure 4.3. The curvature con-
dition, the second Wolfe con-
dition, is necessary to ensure
that second-order function approx-
imations have positive curvature,
thereby having a unique global
minimum.

0

f (x) + α∇
d f (x)

f (x) + ασ∇
d f (x)

reduced curvature

α

y

Figure 4.4. Regions where the cur-
vature condition is satisfied.

0

f (x) + α∇
d f (x)

f (x) + ασ∇
d f (x)

α

y

Figure 4.5. Regions where the
strong curvature condition is sat-
isfied.
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An interval guaranteed to contain step lengths satisfying the Wolfe conditions
is found when one of the following conditions hold:

f (x + α(k)d) ≥ f (x) (4.7)
f (x(k) + α(k)d(k)) > f (x(k)) + βα(k)∇d(k) f (x(k)) (4.8)
∇ f (x + α(k)d) ≥ 0 (4.9)

0

f (x) + βα∇
d f (x)

y = f (x)

α

y

f (x + αd) ≥ f (x)

f (x + αd) > f (x) + βα∇d f (x)

∇ f (x + αd) ≥ 0

Wolfe conditions satisfied

Figure 4.6. The interval [0, α] is
guaranteed to bracket an interval
containing a step length satisfying
the strong Wolfe conditions when
any of these three conditions is
true.

Satisfying equation (4.8) is equivalent to violating the first Wolfe condition,
thereby ensuring that shrinking the step length will guarantee a satisfactory step
length. Similarly, equation (4.7) and equation (4.9) guarantee that the descent
step has overshot a localminimum, and the region betweenmust therefore contain
a satisfactory step length.

Figure 4.6 shows where each bracketing condition is true for an example line
search. The figure shows bracket intervals [0, α], whereas advanced backtracking
line search successively increases the step length to obtain a bracketing interval
[α(k−1), α(k)].

In the zoom phase, we shrink the interval to find a step size satisfying the
strong Wolfe conditions. The shrinking can be done using the bisection method
(section 3.7), updating the interval boundaries according to the same interval
conditions. This process is shown in figure 4.7.
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α(1)

α(2)

α(3)

α(4)

α(5)

α

y

f (x + αd) ≥ f (x)

f (x + αd) > f (x) + βα∇d f (x)

∇ f (x + αd) ≥ 0

Figure 4.7. The first phase of strong
backtracking line search, indicated
with black open circles, is used to
bracket an interval. In this case, the
condition ∇ f (x + α(4)d) ≥ 0 is
triggered, causing the bracketing
interval to be [α(3), α(4)]. Then the
zoom phase, indicated by the red
open circle, shrinks the bracketed
region until a suitable step length
is found.4.4 Trust Region Methods

Descent methods can place too much trust in their first- or second-order infor-
mation, which can result in excessively large steps or premature convergence. A
trust region9 is the local area of the design space where the local model is believed 9 K. Levenberg, ‘‘A Method for the

Solution of Certain Non-Linear
Problems in Least Squares,’’ Quar-
terly of Applied Mathematics, vol. 2,
no. 2, pp. 164–168, 1944.

to be reliable. A trust region method, or restricted step method, maintains a local
model of the trust region that both limits the step taken by traditional line search
and predicts the improvement associated with taking the step. If the improve-
ment closely matches the predicted value, the trust region is expanded. If the
improvement deviates from the predicted value, the trust region is contracted.10 10 A recent review of trust re-

gion methods is provided by Y.X.
Yuan, ‘‘Recent Advances in Trust
Region Algorithms,’’ Mathemati-
cal Programming, vol. 151, no. 1,
pp. 249–281, 2015.

Figure 4.8 shows a design point centered within a circular trust region.
Trust region methods first choose the maximum step size and then the step

direction, which is in contrast with line search methods that first choose a step
direction and then optimize the step size. A trust region approach finds the
next step by minimizing a model of the objective function f̂ over a trust region
centered on the current design point x. An example of f̂ is a second-order Taylor
approximation (see appendix C.2). The radius of the trust region, δ, is expanded
and contracted based on how well the model predicts function evaluations. The
next design point x′ is obtained by solving:

minimize
x′

f̂ (x′)

subject to
∥
∥x− x′

∥
∥ ≤ δ

(4.10)

where the trust region is defined by the positive radius δ and a vector norm.11

11 There are a variety of efficient
methods for solving equa-
tion (4.10) efficiently. For an
overview of the trust region
method applied to quadratic
models, see D.C. Sorensen,
‘‘Newton’s Method with a Model
Trust Region Modification,’’ SIAM
Journal on Numerical Analysis,
vol. 19, no. 2, pp. 409–426, 1982.

The equation above is a constrained optimization problem, which is covered in
chapter 10.
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function strong_backtracking(f, ∇, x, d; α=1, β=1e-4, σ=0.1)
y0, g0, y_prev, α_prev = f(x), ∇(x)⋅d, NaN, 0
αlo, αhi = NaN, NaN

# bracket phase
while true

y = f(x + α*d)
if y > y0 + β*α*g0 || (!isnan(y_prev) && y ≥ y_prev)

αlo, αhi = α_prev, α
break

end
g = ∇(x + α*d)⋅d
if abs(g) ≤ -σ*g0

return α
elseif g ≥ 0

αlo, αhi = α, α_prev
break

end
y_prev, α_prev, α = y, α, 2α

end

# zoom phase
ylo = f(x + αlo*d)
while true

α = (αlo + αhi)/2
y = f(x + α*d)
if y > y0 + β*α*g0 || y ≥ ylo

αhi = α
else

g = ∇(x + α*d)⋅d
if abs(g) ≤ -σ*g0

return α
elseif g*(αhi - αlo) ≥ 0

αhi = αlo
end
αlo = α

end
end

end

Algorithm 4.3. Strong backtrack-
ing approximate line search for
satisfying the strong Wolfe condi-
tions. It takes as input the objective
function f, the gradient function
∇, the design point x and direction
d from which line search is con-
ducted, an initial step size α, and
the Wolfe condition parameters
β and σ. The algorithm’s bracket
phase first brackets an interval con-
taining a step size that satisfies the
strong Wolfe conditions. It then re-
duces this bracketed interval in the
zoom phase until a suitable step
size is found. We interpolate with
bisection, but other schemes can be
used.
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Figure 4.8. Trust region methods
constrain the next step to lie within
a local region. The trusted region
is expanded and contracted based
on the predictive performance of
models of the objective function.

The trust region radius δ is expanded or contracted based on the local model’s
predictive performance. Trust region methods compare the predicted improve-
ment ∆ypred = f (x)− f̂ (x′) to the actual improvement ∆yact = f (x)− f (x′):

η =
actual improvement

predicted improvement =
f (x)− f (x′)
f (x)− f̂ (x′)

(4.11)

The ratio η is close to 1 when the predicted step size matches the actual step
size. If the ratio is too small, such as below a threshold η1, then the improvement
is considered sufficiently less than expected, and the trust region radius is scaled
down by a factor γ1 < 1. If the ratio is sufficiently large, such as above a threshold
η2, then our prediction is considered accurate, and the trust region radius is
scaled up by a factor γ2 > 1. Algorithm 4.4 provides an implementation and
figure 4.9 visualizes the optimization procedure. Example 4.3 shows how to
construct noncircular trust regions.

4.5 Termination Conditions

There are four common termination conditions for descent direction methods:

• Maximum iterations. We may want to terminate when the number of iterations
k exceeds some threshold kmax. Alternatively, we might want to terminate once
a maximum amount of elapsed time is exceeded.

k > kmax (4.12)
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function trust_region_descent(f, ∇f, H, x, k_max;
η1=0.25, η2=0.5, γ1=0.5, γ2=2.0, δ=1.0)
y = f(x)
for k in 1 : k_max

x′, y′ = solve_trust_region_subproblem(∇f, H, x, δ)
r = (y - f(x′)) / (y - y′)
if r < η1

δ *= γ1
else

x, y = x′, y′
if r > η2

δ *= γ2
end

end
end
return x

end

using Convex
function solve_trust_region_subproblem(∇f, H, x0, δ)

x = Variable(length(x0))
p = minimize(∇f(x0)⋅(x-x0) + quadform(x-x0, H(x0))/2)
p.constraints += norm(x-x0) <= δ
solve!(p)
return (x.value, p.optval)

end

Algorithm 4.4. The trust region
descent method, where f is the
objective function, ∇f produces
the derivative, H produces the
Hessian, x is an initial design
point, and k_max is the number of
iterations. The optional parameters
η1 and η2 determine when the
trust region radius δ is increased
or decreased, and γ1 and γ2
control the magnitude of the
change. An implementation for
solve_trust_region_subproblem
must be provided that solves
equation (4.10). We have provided
an example implementation
that uses a second-order Taylor
approximation about x0 with a
circular trust region.
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x(1)

x(10)

x1

x
2

Figure 4.9. Trust region optimiza-
tion used on the Rosenbrock func-
tion (appendix B.6).

Trust regions need not be circular. In some cases, certain directions may have
higher trust than others.

A norm can be constructed to produce elliptical regions:

‖x− x0‖E = (x− x0)
⊤E(x− x0)

with ‖x− x0‖E ≤ 1 where E is a symmetric matrix that defines the ellipse.

The ellipse matrix E can be updated with each descent iteration, which
can involve more complicated adjustments than scaling the trusted region.

Example 4.3. Trust region op-
timization need not use circular
trust regions. Additional detail is
provided by J. Nocedal and S. J.
Wright, ‘‘Trust-Region Methods,’’
inNumerical Optimization. Springer,
2006, pp. 66–100.
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• Absolute improvement. This termination condition looks at the change in the
function value over subsequent steps. If the change is smaller than a given
threshold, it will terminate:

f (x(k))− f (x(k+1)) < ǫa (4.13)

• Relative improvement. This termination condition also looks at the change in
function value but uses the step factor relative to the current function value:

f (x(k))− f (x(k+1)) < ǫr| f (x(k))| (4.14)

• Gradient magnitude. We can also terminate based on the magnitude of the
gradient:

‖∇ f (x(k+1))‖ < ǫg (4.15)

In cases where multiple local minima are likely to exist, it can be beneficial to
incorporate random restarts after our terminiation conditions are met where we
restart our local descent method from randomly selected initial points.

4.6 Summary

• Descent direction methods incrementally descend toward a local optimum.

• Univariate optimization can be applied during line search.

• Approximate line search can be used to identify appropriate descent step sizes.

• Trust regionmethods constrain the step to lie within a local region that expands
or contracts based on predictive accuracy.

• Termination conditions for descent methods can be based on criteria such as
the change in the objective function value or magnitude of the gradient.

4.7 Exercises

Exercise 4.1. Why is it important to have more than one termination condition?
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Exercise 4.2. The first Wolfe condition requires

f (x(k) + αd(k)) ≤ f (x(k)) + βα∇d(k) f (x(k)) (4.16)

What is the maximum step length α that satisfies this condition, given that f (x) =

5 + x2
1 + x2

2, x(k) = [−1,−1], d = [1, 0], and β = 10−4?





5 First-Order Methods

The previous chapter introduced the general concept of descent directionmethods.
This chapter discusses a variety of algorithms that use first-order methods to
select the appropriate descent direction. First-order methods rely on gradient
information to help direct the search for a minimum, which can be obtained using
methods outlined in chapter 2.

5.1 Gradient Descent

An intuitive choice for descent direction d is the direction of steepest descent.
Following the direction of steepest descent is guaranteed to lead to improvement,
provided that the objective function is smooth, the step size is sufficiently small,
and we are not already at a point where the gradient is zero.1 The direction of 1 Apoint where the gradient is zero

is called a stationary point.steepest descent is the direction opposite the gradient∇ f , hence the name gradient
descent. For convenience in this chapter, we define

g(k) = ∇ f (x(k)) (5.1)

where x(k) is our design point at descent iteration k.
In gradient descent, we typically normalize the direction of steepest descent

(see example 5.1):
d(k) = − g(k)

‖g(k)‖ (5.2)

Jagged search paths result if we choose a step size that leads to the maximal
decrease in f . In fact, the next direction will always be orthogonal to the current
direction. We can show this as follows:
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Suppose we have f (x) = x1x2
2. The gradient is ∇ f = [x2

2, 2x1x2]. For x(k) =

[1, 2] we get an unnormalized direction of steepest descent d = [−4,−4],
which is normalized to d = [− 1√

2
,− 1√

2
].

Example 5.1. Computing the gradi-
ent descent direction.

If we optimize the step size at each step, we have

α(k) = arg min
α

f (x(k) + αd(k)) (5.3)

The optimization above implies that the directional derivative equals zero. Using
equation (2.9), we have

∇ f (x(k) + αd(k))⊤d(k) = 0 (5.4)

We know
d(k+1) = − ∇ f (x(k) + αd(k))

‖∇ f (x(k) + αd(k))‖ (5.5)

Hence,
d(k+1)⊤d(k) = 0 (5.6)

which means that d(k+1) and d(k) are orthogonal.
Narrow valleys aligned with a descent direction are not an issue. When the

descent directions cross over the valley, many steps must be taken in order to
make progress along the valley’s floor as shown in figure 5.1. An implementation
of gradient descent is provided by algorithm 5.1.

5.2 Conjugate Gradient

Gradient descent can perform poorly in narrow valleys. The conjugate gradient
method overcomes this issue by borrowing inspiration from methods for opti-
mizing quadratic functions:

minimize
x

f (x) =
1

2
x⊤Ax + b⊤x + c (5.7)

where A is symmetric and positive definite, and thus f has a unique local mini-
mum (section 1.6.2).
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x1

x
2

Figure 5.1. Gradient descent can
result in zig-zagging in narrow
canyons. Here we see the effect
on the Rosenbrock function (ap-
pendix B.6).

abstract type DescentMethod end
struct GradientDescent <: DescentMethod

α
end
init!(M::GradientDescent, f, ∇f, x) = M
function step!(M::GradientDescent, f, ∇f, x)

α, g = M.α, ∇f(x)
return x - α*g

end

Algorithm 5.1. The gradient de-
scent method, which follows the
direction of gradient descent with
a fixed learning rate. The step!
function produces the next iterate
whereas the init function does
nothing.
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The conjugate gradient method can optimize n-dimensional quadratic func-
tions in n steps as shown in figure 5.2. Its directions are mutually conjugate with
respect to A:

d(i)⊤A d(j) = 0 for all i 6= j (5.8)
The mutually conjugate vectors are the basis vectors of A. They are generally not
orthogonal to one another.

1
2

3

x1

x
2

Figure 5.2. Conjugate gradient
descent converges in n steps
when applied to an n-dimensional
quadratic function.

The successive conjugate directions are computed using gradient information
and the previous descent direction. The algorithm starts with the direction of
steepest descent:

d(1) = −g(1) (5.9)
We then use line search to find the next design point. For quadratic functions, the
step factor α can be computed exactly (example 5.2). The update is then:

x(2) = x(1) + α(1)d(1) (5.10)

Suppose we want to derive the optimal step factor for a line search on a
quadratic function:

minimize
α

f (x + αd)

We can compute the derivative with respect to α:

∂ f (x + αd)

∂α
=

∂

∂α

[
1

2
(x + αd)⊤A(x + αd) + b⊤(x + αd) + c

]

= d⊤A(x + αd) + d⊤b

= d⊤(Ax + b) + αd⊤Ad

Setting ∂ f (x+αd)
∂α = 0 results in:

α = −d⊤(Ax + b)

d⊤Ad

Example 5.2. The optimal step fac-
tor for a line search on a quadratic
function.

Subsequent iterations choose d(k+1) based on the next gradient and a contri-
bution from the current descent direction:

d(k+1) = −g(k+1) + β(k)d(k) (5.11)
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for scalar parameter β. Larger values of β indicate that the previous descent
direction contributes more strongly.

We can derive the best value for β for a known A, using the fact that d(k+1) is
conjugate to d(k):

d(k+1)⊤Ad(k) = 0 (5.12)
⇒ (−g(k+1) + β(k)d(k))⊤Ad(k) = 0 (5.13)

⇒ −g(k+1)⊤Ad(k) + β(k)d(k)⊤Ad(k) = 0 (5.14)

⇒ β(k) =
g(k+1)⊤Ad(k)

d(k)⊤Ad(k)
(5.15)

The conjugate gradient method can be applied to nonquadratic functions as
well. Smooth, continuous functions behave like quadratic functions close to a
local minimum, and the conjugate gradient method will converge very quickly in
such regions.

Unfortunately, we do not know the value of A that best approximates f around
x(k). Instead, several choices for β(k) tend to work well:

Fletcher-Reeves:2 2 R. Fletcher and C.M. Reeves,
‘‘Function Minimization by Conju-
gate Gradients,’’ The Computer Jour-
nal, vol. 7, no. 2, pp. 149–154, 1964.

β(k) =
g(k)⊤g(k)

g(k−1)⊤g(k−1)
(5.16)

Polak-Ribière:3 3 E. Polak and G. Ribière, ‘‘Note
sur la Convergence de Méthodes
de Directions Conjuguées,’’
Revue Française d’informatique et
de Recherche Opérationnelle, Série
Rouge, vol. 3, no. 1, pp. 35–43, 1969.

β(k) =
g(k)⊤

(

g(k) − g(k−1)
)

g(k−1)⊤g(k−1)
(5.17)

Convergence for the Polak-Ribière method (algorithm 5.2) can be guaranteed
if we modify it to allow for automatic resets:

β← max(β, 0) (5.18)

Figure 5.3 shows an example search using this method.
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x1

x
2

Figure 5.3. The conjugate gradient
method with the Polak-Ribière up-
date. Gradient descent is shown in
gray.

mutable struct ConjugateGradientDescent <: DescentMethod
d
g

end
function init!(M::ConjugateGradientDescent, f, ∇f, x)

M.g = ∇f(x)
M.d = -M.g
return M

end
function step!(M::ConjugateGradientDescent, f, ∇f, x)

d, g = M.d, M.g
g′ = ∇f(x)
β = max(0, dot(g′, g′-g)/(g⋅g))
d′ = -g′ + β*d
x′ = line_search(f, x, d′)
M.d, M.g = d′, g′
return x′

end

Algorithm 5.2. The conjugate gradi-
ent method with the Polak-Ribière
update, where d is the previous
search direction and g is the pre-
vious gradient.
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5.3 Momentum
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Figure 5.4. Regions that are nearly
flat have gradients with small mag-
nitudes and can thus require many
iterations of gradient descent to tra-
verse.

Gradient descent will take a long time to traverse a nearly flat surface as shown
in figure 5.4. Allowing momentum to accumulate is one way to speed progress.
We can modify gradient descent to incorporate momentum.

The momentum update equations are:

v(k+1) = βv(k) − αg(k) (5.19)
x(k+1) = x(k) + v(k+1) (5.20)

For β = 0, we recover gradient descent. Momentum can be interpreted as a ball
rolling down a nearly horizontal incline. The ball naturally gathers momentum
as gravity causes it to accelerate, just as the gradient causes momentum to accu-
mulate in this descent method. An implementation is provided in algorithm 5.3.
Momentum descent is compared to gradient descent in figure 5.5.

mutable struct Momentum <: DescentMethod
α # learning rate
β # momentum decay
v # momentum

end
function init!(M::Momentum, f, ∇f, x)

M.v = zeros(length(x))
return M

end
function step!(M::Momentum, f, ∇f, x)

α, β, v, g = M.α, M.β, M.v, ∇f(x)
v[:] = β*v - α*g
return x + v

end

Algorithm 5.3. The momentum
method for accelerated descent.

The first line in step! makes
copies of the scalars α and β,
but creates a reference to the vec-
tor v. Thus, the following line
v[:] = β*v - α*g modifies the
original momentum vector in the
struct M.
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x1

x
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gradient descent
momentum

Figure 5.5. Gradient descent and
the momentum method compared
on the Rosenbrock function with
b = 100; see appendix B.6.

5.4 Nesterov Momentum

One issue of momentum is that the steps do not slow down enough at the bottom
of a valley and tend to overshoot the valley floor. Nesterov momentum4 modifies 4 Y.Nesterov, ‘‘AMethod of Solving

a Convex Programming Problem
with Convergence Rate O(1/k2),’’
Soviet Mathematics Doklady, vol. 27,
no. 2, pp. 543–547, 1983.

the momentum algorithm to use the gradient at the projected future position:

v(k+1) = βv(k) − α∇ f (x(k) + βv(k)) (5.21)
x(k+1) = x(k) + v(k+1) (5.22)

An implementation is provided by algorithm 5.4. The Nesterov momentum and
momentum descent methods are compared in figure 5.6.

mutable struct NesterovMomentum <: DescentMethod
α # learning rate
β # momentum decay
v # momentum

end
function init!(M::NesterovMomentum, f, ∇f, x)

M.v = zeros(length(x))
return M

end
function step!(M::NesterovMomentum, f, ∇f, x)

α, β, v = M.α, M.β, M.v
v[:] = β*v - α*∇f(x + β*v)
return x + v

end

Algorithm 5.4. Nesterov’s momen-
tum method of accelerated de-
scent.
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momentum
Nesterov momentum

Figure 5.6. The momentum and
Nesterov momentum methods
compared on the Rosenbrock
function with b = 100; see
appendix B.6.

5.5 Adagrad

Momentum and Nesterov momentum update all components of x with the same
learning rate. The adaptive subgradient method, or Adagrad,5 adapts a learning 5 J. Duchi, E. Hazan, and Y. Singer,

‘‘Adaptive Subgradient Methods
for Online Learning and Stochastic
Optimization,’’ Journal of Machine
Learning Research, vol. 12, pp. 2121–
2159, 2011.

rate for each component of x. Adagrad dulls the influence of parameters with
consistently high gradients, thereby increasing the influence of parameters with
infrequent updates.6

6 Adagrad excels when the gradi-
ent is sparse. The original paper
was motivated by stochastic gradi-
ent descent, which picks a random
batch of training data for each iter-
ation from which to compute a gra-
dient. Many deep learning datasets
for real-world problems produce
sparse gradients where some fea-
tures occur far less frequently than
others.

The Adagrad update step is:

x
(k+1)
i = x

(k)
i −

α

ǫ +
√

s
(k)
i

g
(k)
i (5.23)

where s(k) is a vector whose ith entry is the sum of the squares of the partials,
with respect to xi, up to time step k,

s
(k)
i =

k

∑
j=1

(

g
(j)
i

)2
(5.24)

and ǫ is a small value, on the order of 1× 10−8, to prevent division by zero.
Adagrad is far less sensitive to the learning rate parameter α. The learning rate

parameter is typically set to a default value of 0.01. Adagrad’s primary weakness
is that the components of s are each strictly nondecreasing. The accumulated sum
causes the effective learning rate to decrease during training, often becoming
infinitesimally small before convergence. An implementation is provided by
algorithm 5.5.
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mutable struct Adagrad <: DescentMethod
α # learning rate
ϵ # small value
s # sum of squared gradient

end
function init!(M::Adagrad, f, ∇f, x)

M.s = zeros(length(x))
return M

end
function step!(M::Adagrad, f, ∇f, x)

α, ϵ, s, g = M.α, M.ϵ, M.s, ∇f(x)
s[:] += g.*g
return x - α*g ./ (sqrt.(s) .+ ϵ)

end

Algorithm 5.5. The Adagrad accel-
erated descent method.

5.6 RMSProp

RMSProp7 extends Adagrad to avoid the effect of a monotonically decreasing 7 RMSProp is unpublished and
comes from Lecture 6e of Geoff
Hinton’s Coursera class.learning rate. RMSProp maintains a decaying average of squared gradients. This

average is updated according to:8 8 The operation a ⊙ b is the
element-wise product between
vectors a and b.ŝ(k+1) = γŝ(k) + (1− γ)

(

g(k) ⊙ g(k)
)

(5.25)

where the decay γ ∈ [0, 1] is typically close to 0.9.
The decaying average of past squared gradients can be substituted into RM-

SProp’s update equation:9 9 The denominator is similar to the
root mean square (RMS) of the
gradient component. In this chap-
ter we use RMS(x) to refer to the
decaying root mean square of the
time series of x.

x
(k+1)
i = x

(k)
i −

α

ǫ +
√

ŝ
(k)
i

g
(k)
i (5.26)

= x
(k)
i −

α

ǫ + RMS(gi)
g
(k)
i (5.27)

An implementation is provided by algorithm 5.6.

5.7 Adadelta

Adadelta10 is another method for overcoming Adagrad’s monotonically decreasing 10 M.D. Zeiler, ‘‘ADADELTA: An
Adaptive Learning Rate Method,’’
ArXiv, no. 1212.5701, 2012.learning rate. After independently deriving the RMSProp update, the authors

noticed that the units in the update equations for gradient descent, momentum,
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mutable struct RMSProp <: DescentMethod
α # learning rate
γ # decay
ϵ # small value
s # sum of squared gradient

end
function init!(M::RMSProp, f, ∇f, x)

M.s = zeros(length(x))
return M

end
function step!(M::RMSProp, f, ∇f, x)

α, γ, ϵ, s, g = M.α, M.γ, M.ϵ, M.s, ∇f(x)
s[:] = γ*s + (1-γ)*(g.*g)
return x - α*g ./ (sqrt.(s) .+ ϵ)

end

Algorithm 5.6. The RMSProp accel-
erated descent method.

andAdagrad do not match. To fix this, they use an exponentially decaying average
of the square updates:

x
(k+1)
i = x

(k)
i −

RMS(∆xi)

ǫ + RMS(gi)
g
(k)
i (5.28)

which eliminates the learning rate parameter entirely. An implementation is
provided by algorithm 5.7.

5.8 Adam

The adaptive moment estimation method, or Adam,11 also adapts learning rates to 11 D. Kingma and J. Ba, ‘‘Adam: A
Method for Stochastic Optimiza-
tion,’’ in International Conference
on Learning Representations (ICLR),
2015.

each parameter (algorithm 5.8). It stores both an exponentially decaying squared
gradient like RMSProp and Adadelta, but also an exponentially decaying gradient
like momentum.

Initializing the gradient and squared gradient to zero introduces a bias. A bias
correction step helps alleviate the issue.12 The equations applied during each 12 According to the original

paper, good default settings are
α = 0.001, γv = 0.9, γs = 0.999,
and ǫ = 1× 10−8.
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mutable struct Adadelta <: DescentMethod
γs # gradient decay
γx # update decay
ϵ # small value
s # sum of squared gradients
u # sum of squared updates

end
function init!(M::Adadelta, f, ∇f, x)

M.s = zeros(length(x))
M.u = zeros(length(x))
return M

end
function step!(M::Adadelta, f, ∇f, x)

γs, γx, ϵ, s, u, g = M.γs, M.γx, M.ϵ, M.s, M.u, ∇f(x)
s[:] = γs*s + (1-γs)*g.*g
Δx = - (sqrt.(u) .+ ϵ) ./ (sqrt.(s) .+ ϵ) .* g
u[:] = γx*u + (1-γx)*Δx.*Δx
return x + Δx

end

Algorithm 5.7. The Adadelta accel-
erated descent method. The small
constant ϵ is added to the numer-
ator as well to prevent progress
from entirely decaying to zero and
to start off the first iteration where
∆x = 0.

iteration for Adam are:

biased decaying momentum: v(k+1) = γvv(k) + (1− γv)g
(k) (5.29)

biased decaying sq. gradient: s(k+1) = γss
(k) + (1− γs)

(

g(k) ⊙ g(k)
)

(5.30)

corrected decaying momentum: v̂(k+1) = v(k+1)/(1− γk
v) (5.31)

corrected decaying sq. gradient: ŝ(k+1) = s(k+1)/(1− γk
s ) (5.32)

next iterate: x(k+1) = x(k) − αv̂(k+1)/
(

ǫ +
√

ŝ(k+1)
)

(5.33)

5.9 Hypergradient Descent

The accelerated descent methods are either extremely sensitive to the learning rate
or go to great lengths to adapt the learning rate during execution. The learning
rate dictates how sensitive the method is to the gradient signal. A rate that is too
high or too low often drastically affects performance.
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mutable struct Adam <: DescentMethod
α # learning rate
γv # decay
γs # decay
ϵ # small value
k # step counter
v # 1st moment estimate
s # 2nd moment estimate

end
function init!(M::Adam, f, ∇f, x)

M.k = 0
M.v = zeros(length(x))
M.s = zeros(length(x))
return M

end
function step!(M::Adam, f, ∇f, x)

α, γv, γs, ϵ, k = M.α, M.γv, M.γs, M.ϵ, M.k
s, v, g = M.s, M.v, ∇f(x)
v[:] = γv*v + (1-γv)*g
s[:] = γs*s + (1-γs)*g.*g
M.k = k += 1
v_hat = v ./ (1 - γv^k)
s_hat = s ./ (1 - γs^k)
return x - α*v_hat ./ (sqrt.(s_hat) .+ ϵ)

end

Algorithm 5.8. The Adam acceler-
ated descent method.
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Hypergradient descent13 was developed with the understanding that the deriva- 13 A.G. Baydin, R. Cornish, D.M.
Rubio, M. Schmidt, and F. Wood,
‘‘Online Learning Rate Adaptation
with Hypergradient Descent,’’ in
International Conference on Learning
Representations (ICLR), 2018.

tive of the learning rate should be useful for improving optimizer performance. A
hypergradient is a derivative taken with respect to a hyperparameter. Hypergradi-
ent algorithms reduce the sensitivity to the hyperparameter, allowing it to adapt
more quickly.

Hypergradient descent applies gradient descent to the learning rate of an
underlying descent method. The method requires the partial derivative of the
objective function with respect to the learning rate. For gradient descent, this
partial derivative is:

∂ f (x(k))

∂α
= (g(k))⊤

∂

∂α

(

x(k−1) − αg(k−1)
)

(5.34)

= (g(k))⊤
(

−g(k−1)
)

(5.35)

Computing the hypergradient thus requires keeping track of the last gradient.
The resulting update rule is:

α(k+1) = α(k) − µ
∂ f (x(k))

∂α
(5.36)

= α(k) + µ(g(k))⊤g(k−1) (5.37)

where µ is the hypergradient learning rate.
This derivation can be applied to any gradient-based descent method that fol-

lows equation (4.1). Implementations are provided for the hypergradient versions
of gradient descent (algorithm 5.9) and Nesterov momentum (algorithm 5.10).
These methods are visualized in figure 5.7.
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mutable struct HyperGradientDescent <: DescentMethod
α0 # initial learning rate
μ # learning rate of the learning rate
α # current learning rate
g_prev # previous gradient

end
function init!(M::HyperGradientDescent, f, ∇f, x)

M.α = M.α0
M.g_prev = zeros(length(x))
return M

end
function step!(M::HyperGradientDescent, f, ∇f, x)

α, μ, g, g_prev = M.α, M.μ, ∇f(x), M.g_prev
α = α + μ*(g⋅g_prev)
M.g_prev, M.α = g, α
return x - α*g

end

Algorithm 5.9. The hypergradient
form of gradient descent.

mutable struct HyperNesterovMomentum <: DescentMethod
α0 # initial learning rate
μ # learning rate of the learning rate
β # momentum decay
v # momentum
α # current learning rate
g_prev # previous gradient

end
function init!(M::HyperNesterovMomentum, f, ∇f, x)

M.α = M.α0
M.v = zeros(length(x))
M.g_prev = zeros(length(x))
return M

end
function step!(M::HyperNesterovMomentum, f, ∇f, x)

α, β, μ = M.α, M.β, M.μ
v, g, g_prev = M.v, ∇f(x), M.g_prev
α = α - μ*(g⋅(-g_prev - β*v))
v[:] = β*v + g
M.g_prev, M.α = g, α
return x - α*(g + β*v)

end

Algorithm 5.10. The hypergradient
form of the Nesterov momentum
descent method.
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x1

x
2

hypermomentum
hyper-Nesterov

Figure 5.7. The momentum and
Nesterov momentum methods
compared on the Rosenbrock
function with b = 100; see
appendix B.6.

5.10 Summary

• Gradient descent follows the direction of steepest descent.

• The conjugate gradient method can automatically adjust to local valleys.

• Descent methods with momentum build up progress in favorable directions.

• A wide variety of accelerated descent methods use special techniques to speed
up descent.

• Hypergradient descent applies gradient descent to the learning rate of an
underlying descent method.

5.11 Exercises

Exercise 5.1. Compute the gradient of x⊤Ax + b⊤x when A is symmetric.
Exercise 5.2. Apply gradient descent with a unit step size to f (x) = x4 from a
starting point of your choice. Compute two iterations.
Exercise 5.3. Apply one step of gradient descent to f (x) = ex + e−x from x(1) =

10 with both a unit step size and with exact line search.
Exercise 5.4. The conjugate gradient method can also be used to find a search
direction d when a local quadratic model of a function is available at the current
point. With d as search direction, let the model be

q(d) = d⊤Hd + b⊤d + c
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for a symmetric matrix H. What is the Hessian in this case? What is the gradient
of q when d = 0? What can go wrong if the conjugate gradient method is applied
to the quadratic model to get the search direction d?

Exercise 5.5. How is Nesterov momentum an improvement over momentum?

Exercise 5.6. In what way is the conjugate gradient method an improvement over
steepest descent?

Exercise 5.7. In conjugate gradient descent, what is the normalized descent
direction at the first iteration for the function f (x, y) = x2 + xy + y2 + 5 when
initialized at (x, y) = (1, 1)? What is the resulting point after two steps of the
conjugate gradient method?

Exercise 5.8. We have a polynomial function f such that f (x) > 2 for all x in
three-dimensional Euclidean space. Suppose we are using steepest descent with
step lengths optimized at each step, and we want to find a local minimum of f .
If our unnormalized descent direction is [1, 2, 3] at step k, is it possible for our
unnormalized descent direction at step k + 1 to be [0, 0,−3]? Why or why not?





6 Second-Order Methods

The previous chapter focused on optimization methods that involve first-order
approximations of the objective function using the gradient. This chapter focuses
on leveraging second-order approximations that use the second derivative in uni-
variate optimization or the Hessian in multivariate optimization to direct the
search. This additional information can help improve the local model used for
informing the selection of directions and step lengths in descent algorithms.

6.1 Newton’s Method

Knowing the function value and gradient for a design point can help determine
the direction to travel, but this first-order information does not directly help
determine how far to step to reach a local minimum. Second-order information,
on the other hand, allows us to make a quadratic approximation of the objective
function and approximate the right step size to reach a local minimum as shown
in figure 6.1. As we have seen with quadratic fit search in chapter 3, we can
analytically obtain the location where a quadratic approximation has a zero
gradient. We can then use that location as the next iteration to approach a local
minimum.

In univariate optimization, the quadratic approximation about a point x(k)

comes from the second-order Taylor expansion:

q(x) = f (x(k)) + (x− x(k)) f ′(x(k)) +
(x− x(k))2

2
f ′′(x(k)) (6.1)
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x

f

x

f

Figure 6.1. A comparison of first-
order and second-order approxi-
mations. Bowl-shaped quadratic
approximations have unique loca-
tions where the derivative is zero.

Setting the derivative to zero and solving for the root yields the update equation
for Newton’s method:

∂

∂x
q(x) = f ′(x(k)) + (x− x(k)) f ′′(x(k)) = 0 (6.2)

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
(6.3)

This update is shown in figure 6.2.

x(k)x(k+1)

x

f

x(k)x(k+1)

0

x

f′

Figure 6.2. Newton’s method can
be interpreted as a root-finding
method applied to f ′ that itera-
tively improves a univariate design
point by taking the tangent line at
(x, f ′(x)), finding the intersection
with the x-axis, and using that x
value as the next design point.

The update rule inNewton’smethod involves dividing by the secondderivative.
The update is undefined if the second derivative is zero, which occurs when the
quadratic approximation is a horizontal line. Instability also occurs when the
second derivative is very close to zero, inwhich case the next iteratewill lie very far
from the current design point, far from where the local quadratic approximation
is valid. Poor local approximations can lead to poor performance with Newton’s
method. Figure 6.3 shows three kinds of failure cases.
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x

f

Oscillation

x(k) x(k+1)

x

Overshoot

x(k)x(k+1)

x

Negative f ′′

Figure 6.3. Examples of failure
cases with Newton’s method.

Newton’s method does tend to converge quickly when in a bowl-like region
that is sufficiently close to a local minimum. It has quadratic convergence, meaning
the difference between the minimum and the iterate is approximately squared
with every iteration. This rate of convergence holds for Newton’s method starting
from x(1) within a distance δ of a root x∗ if1 1 The final condition enforces suf-

ficient closeness, ensuring that the
function is sufficiently approxi-
mated by the Taylor expansion.
J. Stoer and R. Bulirsch, Introduc-
tion to Numerical Analysis, 3rd ed.
Springer, 2002.

• f ′′(x) 6= 0 for all points in I,

• f ′′′(x) is continuous on I, and

• 1
2 |

f ′′′(x(1))

f ′′(x(1))
| < c| f ′′′(x∗)

f ′′(x∗) | for some c < ∞

for an interval I = [x∗ − δ, x∗ + δ]. The final condition guards against overshoot.
Newton’smethod can be extended tomultivariate optimization (algorithm 6.1).

The multivariate second-order Taylor expansion at x(k) is:

f (x) ≈ q(x) = f (x(k)) + (g(k))⊤(x− x(k)) +
1

2
(x− x(k))⊤H(k)(x− x(k)) (6.4)

where g(k) and H(k) are the gradient and Hessian at x(k), respectively.
We evaluate the gradient and set it to zero:

∇q(x(k)) = g(k) + H(k)(x− x(k)) = 0 (6.5)

We then solve for the next iterate, thereby obtaining Newton’s method in multi-
variate form:

x(k+1) = x(k) − (H(k))−1g(k) (6.6)
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If f is quadratic and its Hessian is positive definite, then the update converges
to the global minimum in one step. For general functions, Newton’s method
is often terminated once x ceases to change by more than a given tolerance.2

2 Termination conditions for de-
scent methods are given in chap-
ter 5.

Example 6.1 shows how Newton’s method can be used to minimize a function.

With x(1) = [9, 8], we will use Newton’s method to minimize Booth’s func-
tion:

f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

The gradient of Booth’s function is:

∇ f (x) = [10x1 + 8x2 − 34, 8x1 + 10x2 − 38]

The Hessian of Booth’s function is:

H(x) =

[

10 8

8 10

]

The first iteration of Newton’s method yields:

x(2) = x(1) −
(

H(1)
)−1

g(1) =

[

9

8

]

−
[

10 8

8 10

]−1 [

10 · 9 + 8 · 8− 34

8 · 9 + 10 · 8− 38

]

=

[

9

8

]

−
[

10 8

8 10

]−1 [

120

114

]

=

[

1

3

]

The gradient at x(2) is zero, so we have converged after a single iteration. The
Hessian is positive definite everywhere, so x(2) is the global minimum.

Example 6.1. Newton’s method
used to minimize Booth’s function;
see appendix B.2.

Newton’s method can also be used to supply a descent direction to line search
or can be modified to use a step factor.3 Smaller steps toward the minimum or 3 See chapter 5.
line searches along the descent direction can increase the method’s robustness.
The descent direction is:4 4 The descent direction given by

Newton’s method is similar to the
natural gradient or covariant gra-
dient. S. Amari, ‘‘Natural Gradi-
ent Works Efficiently in Learning,’’
Neural Computation, vol. 10, no. 2,
pp. 251–276, 1998.

d(k) = −(H(k))−1g(k) (6.7)
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function newtons_method(∇f, H, x, ϵ, k_max)
k, Δ = 1, fill(Inf, length(x))
while norm(Δ) > ϵ && k ≤ k_max

Δ = H(x) \ ∇f(x)
x -= Δ
k += 1

end
return x

end

Algorithm 6.1. Newton’s method,
which takes the gradient of the
function ∇f, the Hessian of the ob-
jective function H, an initial point x,
a step size tolerance ϵ, and a maxi-
mum number of iterations k_max.

6.2 Secant Method

Newton’s method for univariate function minimization requires the first and
second derivatives f ′ and f ′′. In many cases, f ′ is known but the second derivative
is not. The secant method (algorithm 6.2) applies Newton’s method using estimates
of the second derivative and thus only requires f ′. This property makes the secant
method more convenient to use in practice.

The secant method uses the last two iterates to approximate the second deriva-
tive:

f ′′(x(k)) ≈ f ′(x(k))− f ′(x(k−1))

x(k) − x(k−1)
(6.8)

This estimate is substituted into Newton’s method:

x(k+1) ← x(k) − x(k) − x(k−1)

f ′(x(k))− f ′(x(k−1))
f ′(x(k)) (6.9)

The secant method requires an additional initial design point. It suffers from
the same problems as Newton’s method andmay take more iterations to converge
due to approximating the second derivative.

6.3 Quasi-Newton Methods

Just as the secant method approximates f ′′ in the univariate case, quasi-Newton
methods approximate the inverse Hessian. Quasi-Newton method updates have
the form:

x(k+1) ← x(k) − α(k)Q(k)g(k) (6.10)
where α(k) is a scalar step factor and Q(k) approximates the inverse of the Hessian
at x(k).
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function secant_method(f′, x0, x1, ϵ)
g0 = f′(x0)
Δ = Inf
while abs(Δ) > ϵ

g1 = f′(x1)
Δ = (x1 - x0)/(g1 - g0)*g1
x0, x1, g0 = x1, x1 - Δ, g1

end
return x1

end

Algorithm 6.2. The secant method
for univariate function minimiza-
tion. The inputs are the first deriva-
tive f′ of the target function, two
initial points x0 and x1, and the
desired tolerance ϵ. The final x-
coordinate is returned.

These methods typically set Q(1) to the identity matrix, and they then apply up-
dates to reflect information learned with each iteration. To simplify the equations
for the various quasi-Newton methods, we define the following:

γ(k+1) ≡ g(k+1) − g(k) (6.11)
δ(k+1) ≡ x(k+1) − x(k) (6.12)

The Davidon-Fletcher-Powell (DFP) method (algorithm 6.3) uses:5 5 The original concept was pre-
sented in a technical report, W.C.
Davidon, ‘‘Variable Metric Method
for Minimization,’’ Argonne Na-
tional Laboratory, Tech. Rep. ANL-
5990, 1959. It was later published:
W.C. Davidon, ‘‘Variable Metric
Method for Minimization,’’ SIAM
Journal on Optimization, vol. 1, no. 1,
pp. 1–17, 1991. The method was
modified by R. Fletcher andM. J. D.
Powell, ‘‘A Rapidly Convergent De-
scent Method for Minimization,’’
The Computer Journal, vol. 6, no. 2,
pp. 163–168, 1963.

Q← Q− Qγγ⊤Q

γ⊤Qγ
+

δδ⊤

δ⊤γ
(6.13)

where all terms on the right hand side are evaluated at iteration k.
The update for Q in the DFP method has three properties:

1. Q remains symmetric and positive definite.

2. If f (x) = 1
2 x⊤Ax + b⊤x + c, then Q = A−1. Thus the DFP has the same

convergence properties as the conjugate gradient method.

3. For high-dimensional problems, storing and updating Q can be significant
compared to other methods like the conjugate gradient method.

An alternative to DFP, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
(algorithm 6.4), uses:6 6 R. Fletcher,PracticalMethods of Op-

timization, 2nd ed. Wiley, 1987.

Q← Q−
(

δγ⊤Q + Qγδ⊤

δ⊤γ

)

+

(

1 +
γ⊤Qγ

δ⊤γ

)

δδ⊤

δ⊤γ
(6.14)
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mutable struct DFP <: DescentMethod
Q

end
function init!(M::DFP, f, ∇f, x)

m = length(x)
M.Q = Matrix(1.0I, m, m)
return M

end
function step!(M::DFP, f, ∇f, x)

Q, g = M.Q, ∇f(x)
x′ = line_search(f, x, -Q*g)
g′ = ∇f(x′)
δ = x′ - x
γ = g′ - g
Q[:] = Q - Q*γ*γ'*Q/(γ'*Q*γ) + δ*δ'/(δ'*γ)
return x′

end

Algorithm 6.3. The Davidon-
Fletcher-Powell descent method.

mutable struct BFGS <: DescentMethod
Q

end
function init!(M::BFGS, f, ∇f, x)

m = length(x)
M.Q = Matrix(1.0I, m, m)
return M

end
function step!(M::BFGS, f, ∇f, x)

Q, g = M.Q, ∇f(x)
x′ = line_search(f, x, -Q*g)
g′ = ∇f(x′)
δ = x′ - x
γ = g′ - g
Q[:] = Q - (δ*γ'*Q + Q*γ*δ')/(δ'*γ) +

(1 + (γ'*Q*γ)/(δ'*γ))[1]*(δ*δ')/(δ'*γ)
return x′

end

Algorithm 6.4. The Broyden-
Fletcher-Goldfarb-Shanno descent
method.
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BFGS does better than DFP with approximate line search but still uses an
n× n dense matrix. For very large problems where space is a concern, the Limited-
memory BFGS method (algorithm 6.5), or L-BFGS, can be used to approximate
BFGS.7 L-BFGS stores the last m values for δ and γ rather than the full inverse 7 J. Nocedal, ‘‘Updating Quasi-

Newton Matrices with Limited
Storage,’’ Mathematics of Computa-
tion, vol. 35, no. 151, pp. 773–782,
1980.

Hessian, where i = 1 indexes the oldest value and i = m indexes the most recent.
The process for computing the descent direction d at x begins by computing

q(m) = ∇ f (x). The remaining vectors q(i) for i from m− 1 down to 1 are computed
using

q(i) = q(i+1) −

(

δ(i+1)
)⊤

q(i+1)

(
γ(i+1)

)⊤
δ(i+1)

γ(i+1) (6.15)

These vectors are used to compute another m + 1 vectors, starting with

z(0) =
γ(m) ⊙ δ(m) ⊙ q(m)

(
γ(m)

)⊤
γ(m)

(6.16)

and proceeding with z(i) for i from 1 to m according to

z(i) = z(i−1) + δ(i−1)






(

δ(i−1)
)⊤

q(i−1)

(
γ(i−1)

)⊤
δ(i−1)

−

(

γ(i−1)
)⊤

z(i−1)

(
γ(i−1)

)⊤
δ(i−1)




 (6.17)

The descent direction is d = −z(m).
For minimization, the inverse Hessian Q must remain positive definite. The

initial Hessian is often set to the diagonal of

Q(1) =
γ(1)

(

δ(1)
)⊤

(
γ(1)

)⊤
γ(1)

(6.18)

Computing the diagonal for the above expression and substituting the result into
z(1) = Q(1)q(1) results in the equation for z(1).

The quasi-Newtonmethods discussed in this section are compared in figure 6.4.
They often perform quite similarly.
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x1

x
2

DFP
BFGS
L-BFGS (m = 3)
L-BFGS (m = 2)
L-BFGS (m = 1)

Figure 6.4. Several quasi-Newton
methods compared on the Rosen-
brock function; see appendix B.6.
All methods have nearly identical
updates, with L-BFGS noticeably
deviating only when its history, m,
is 1.

6.4 Summary

• Incorporating second-order information in descent methods often speeds con-
vergence.

• Newton’s method is a root-finding method that leverages second-order infor-
mation to quickly descend to a local minimum.

• The secantmethod and quasi-Newtonmethods approximateNewton’smethod
when the second-order information is not directly available.

6.5 Exercises

Exercise 6.1. What advantage does second-order information provide about
convergence that first-order information lacks?

Exercise 6.2. When finding roots in one dimension, whenwouldwe useNewton’s
method instead of the bisection method?

Exercise 6.3. Apply Newton’s method to f (x) = x2 from a starting point of your
choice. How many steps do we need to converge?
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mutable struct LimitedMemoryBFGS <: DescentMethod
m
δs
γs
qs

end
function init!(M::LimitedMemoryBFGS, f, ∇f, x)

M.δs = []
M.γs = []
M.qs = []
return M

end
function step!(M::LimitedMemoryBFGS, f, ∇f, x)

δs, γs, qs, g = M.δs, M.γs, M.qs, ∇f(x)
m = length(δs)
if m > 0

q = g
for i in m : -1 : 1

qs[i] = copy(q)
q -= (δs[i]⋅q)/(γs[i]⋅δs[i])*γs[i]

end
z = (γs[m] .* δs[m] .* q) / (γs[m]⋅γs[m])
for i in 1 : m

z += δs[i]*(δs[i]⋅qs[i] - γs[i]⋅z)/(γs[i]⋅δs[i])
end
x′ = line_search(f, x, -z)

else
x′ = line_search(f, x, -g)

end
g′ = ∇f(x′)
push!(δs, x′ - x); push!(γs, g′ - g)
push!(qs, zeros(length(x)))
while length(δs) > M.m

popfirst!(δs); popfirst!(γs); popfirst!(qs)
end
return x′

end

Algorithm 6.5. The Limited-
memory BFGS descent method,
which avoids storing the ap-
proximate inverse Hessian. The
parameter m determines the history
size. The LimitedMemoryBFGS type
also stores the step differences
δs, the gradient changes γs, and
storage vectors qs.
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Exercise 6.4. Apply Newton’s method to f (x) = 1
2 x⊤Hx starting from x(1) =

[1, 1]. What have you observed? Use H as follows:

H =

[

1 0

0 1000

]

(6.19)

Next, apply gradient descent to the same optimization problem by stepping
with the unnormalized gradient. Do two steps of the algorithm. What have you
observed? Finally, apply the conjugate gradient method. How many steps do you
need to converge?

Exercise 6.5. CompareNewton’smethod and the secantmethod on f (x) = x2 + x4,
with x(1) = −3 and x(0) = −4. Run each method for 10 iterations. Make two
plots:

1. Plot f vs. the iteration for each method.

2. Plot f ′ vs. x. Overlay the progression of each method, drawing lines from
(x(i), f ′(x(i))) to (x(i+1), 0) to (x(i+1), f ′(x(i+1))) for each transition.

What can we conclude about this comparison?

Exercise 6.6. Give an example of a sequence of points x(1), x(2), . . . and a function
f such that f (x(1)) > f (x(2)) > · · · and yet the sequence does not converge to a
local minimum. Assume f is bounded from below.

Exercise 6.7. What is the advantage of a Quasi-Newton method over Newton’s
method?

Exercise 6.8. Give an examplewhere the BFGS update does not exist.What would
you do in this case?

Exercise 6.9. Suppose we have a function f (x) = (x1 + 1)2 + (x2 + 3)2 + 4. If we
start at the origin, what is the resulting point after one step of Newton’s method?

Exercise 6.10. In this problem we will derive the optimization problem from
which the Davidon-Fletcher-Powell update is obtained. Start with a quadratic
approximation at x(k):

f (k)(x) = y(k) +
(

g(k)
)⊤(

x− x(k)
)

+
1

2

(

x− x(k)
)⊤

H(k)
(

x− x(k)
)
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where y(k), g(k), and H(k) are the objective function value, the true gradient, and
a positive definite Hessian approximation at x(k).

The next iterate is chosen using line search to obtain:

x(k+1) ← x(k) − α(k)
(

H(k)
)−1

g(k)

We can construct a new quadratic approximation f (k+1) at x(k+1). The approxi-
mation should enforce that the local function evaluation is correct:

f (k+1)(x(k+1)) = y(k+1)

and that the local gradient is correct:

∇ f (k+1)(x(k+1)) = g(k+1)

and that the previous gradient is correct:

∇ f (k+1)(x(k)) = g(k)

Show that updating the Hessian approximation to obtain H(k+1) requires:8 8 This condition is called the secant
equation. The vectors δ and γ are
defined in equation (6.11).H(k+1)δ(k+1) = γ(k+1)

Then, show that in order for H(k+1) to be positive definite, we require:9 9 This condition is called the cur-
vature condition. It can be enforced
using the Wolfe conditions during
line search.

(

δ(k+1)
)⊤

γ(k+1)
> 0

Finally, assuming that the curvature condition is enforced, explain why one
then solves the following optimization problem to obtain H(k+1):10 10 The Davidon-Fletcher-Powell up-

date is obtained by solving such
an optimization problem to obtain
an analytical solution and then
finding the corresponding update
equation for the inverse Hessian
approximation.

minimize
H

∥
∥
∥H−H(k)

∥
∥
∥

subject to H = H⊤

Hδ(k+1) = γ(k+1)

where
∥
∥
∥H−H(k)

∥
∥
∥ is a matrix norm that defines a distance between H and H(k).



7 Direct Methods

Direct methods rely solely on the objective function f . These methods are also
called zero-order, black box, pattern search, or derivative-freemethods. Direct methods
do not rely on derivative information to guide them toward a local minimum
or identify when they have reached a local minimum. They use other criteria to
choose the next search direction and to judge when they have converged.

7.1 Cyclic Coordinate Search x1

x
2

Figure 7.1. Cyclic coordinate de-
scent alternates between coordi-
nate directions.

x1
x

2

Figure 7.2. Above is an example of
how cyclic coordinate search can
get stuck. Moving in either of the
coordinate directions will result
only in increasing f , but moving
diagonally, which is not allowed in
cyclic coordinate search, can result
in lowering f .

Cyclic coordinate search, also known as coordinate descent or taxicab search, simply
alternates between coordinate directions for its line search. The search starts from
an initial x(1) and optimizes the first input:

x(2) = arg min
x1

f (x1, x
(1)
2 , x

(1)
3 , . . . , x

(1)
n ) (7.1)

Having solved this, it optimizes the next coordinate:

x(3) = arg min
x2

f (x
(2)
1 , x2, x

(2)
3 , . . . , x

(2)
n ) (7.2)

This process is equivalent to doing a sequence of line searches along the set of n

basis vectors, where the ith basis vector is all zero except for the ith component,
which has value 1 (algorithm 7.1). For example, the third basis function, denoted
e(3), in a four-dimensional space is:

e(3) = [0, 0, 1, 0] (7.3)
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basis(i, n) = [k == i ? 1.0 : 0.0 for k in 1 : n] Algorithm 7.1. A function for con-
structing the ith basis vector of
length n.

Figure 7.1 shows an example of a search through a two-dimensional space.
Like steepest descent, cyclic coordinate search is guaranteed either to improve

or to remain the same with each iteration. No significant improvement after a full
cycle over all coordinates indicates that the method has converged. Algorithm 7.2
provides an implementation. As figure 7.2 shows, cyclic coordinate search can
fail to find even a local minimum.

function cyclic_coordinate_descent(f, x, ϵ)
Δ, n = Inf, length(x)
while abs(Δ) > ϵ

x′ = copy(x)
for i in 1 : n

d = basis(i, n)
x = line_search(f, x, d)

end
Δ = norm(x - x′)

end
return x

end

Algorithm 7.2. The cyclic coordi-
nate descent method takes as in-
put the objective function f and a
starting point x, and it runs until
the step size over a full cycle is less
than a given tolerance ϵ.

The method can be augmented with an acceleration step to help traverse
diagonal valleys. For every full cycle starting with optimizing x(1) along e(1)

and ending with x(n+1) after optimizing along e(n), an additional line search is
conducted along the direction x(n+1) − x(1). An implementation is provided in
algorithm 7.3 and an example search trajectory is shown in figure 7.3.

x1

x
2

original
accelerated

Figure 7.3. Adding the accelera-
tion step to cyclic coordinate de-
scent helps traverse valleys. Six
steps are shown for both the origi-
nal and accelerated versions.

7.2 Powell’s Method

Powell’s method1 can search in directions that are not orthogonal to each other. The

1 Powell’s method was first intro-
duced by M. J.D. Powell, ‘‘An Ef-
ficient Method for Finding the
Minimum of a Function of Sev-
eral Variables Without Calculat-
ing Derivatives,’’ Computer Journal,
vol. 7, no. 2, pp. 155–162, 1964.
An overview is presented by W.H.
Press, S.A. Teukolsky, W. T. Vetter-
ling, and B. P. Flannery, Numerical
Recipes in C: The Art of Scientific
Computing. Cambridge University
Press, 1982, vol. 2.

method can automatically adjust for long, narrow valleys that might otherwise
require a large number of iterations for cyclic coordinate descent or other methods
that search in axis-aligned directions.
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function cyclic_coordinate_descent_with_acceleration_step(f, x, ϵ)
Δ, n = Inf, length(x)
while abs(Δ) > ϵ

x′ = copy(x)
for i in 1 : n

d = basis(i, n)
x = line_search(f, x, d)

end
x = line_search(f, x, x - x′) # acceleration step
Δ = norm(x - x′)

end
return x

end

Algorithm 7.3. The cyclic coordi-
nate descent method with an ac-
celeration step takes as input the
objective function f and a starting
point x, and it runs until the step
size over a full cycle is less than a
given tolerance ϵ.

x1

x
2

Figure 7.4. Powell’s method starts
the same as cyclic coordinate de-
scent but iteratively learns conju-
gate directions.

The algorithm maintains a list of search directions u(1), . . . , u(n), which are
initially the coordinate basis vectors, u(i) = e(i) for all i. Starting at x(1), Powell’s
method conducts a line search for each search direction in succession, updating
the design point each time:

x(i+1) ← line_search( f , x(i), u(i)) for all i in {1, . . . , n} (7.4)

Next, all search directions are shifted down by one index, dropping the oldest
search direction, u(1):

u(i) ← u(i+1) for all i in {1, . . . , n− 1} (7.5)

The last search direction is replaced with the direction from x(1) to x(n+1), which
is the overall direction of progress over the last cycle:

u(n) ← x(n+1) − x(1) (7.6)

and another line search is conducted along the new direction to obtain a new x(1).
This process is repeated until convergence. Algorithm 7.4 provides an implemen-
tation. Figure 7.4 shows an example search trajectory.

Powell showed that for quadratic functions, after k full iterations the last k

directions will be mutually conjugate. Recall that n line searches along mutually
conjugate directions will optimize a quadratic function. Thus, n full iterations
of Powell’s method, totaling n(n + 1) line searches, will minimize a quadratic
function.
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function powell(f, x, ϵ)
n = length(x)
U = [basis(i,n) for i in 1 : n]
Δ = Inf
while Δ > ϵ

x′ = x
for i in 1 : n

d = U[i]
x′ = line_search(f, x′, d)

end
for i in 1 : n-1

U[i] = U[i+1]
end
U[n] = d = x′ - x
x′ = line_search(f, x, d)
Δ = norm(x′ - x)
x = x′

end
return x

end

Algorithm 7.4. Powell’s method,
which takes the objective function
f, a starting point x, and a tolerance
ϵ.

The procedure of dropping the oldest search direction in favor of the overall
direction of progress can lead the search directions to become linearly dependent.
Without search vectors that are linearly independent, the search directions can
no longer cover the full design space, and the method may not be able to find the
minimum. This weakness can be mitigated by periodically resetting the search
directions to the basis vectors. One recommendation is to reset every n or n + 1

iterations.

7.3 Hooke-Jeeves

TheHooke-Jeeves method (algorithm 7.5) traverses the search space based on evalu-
ations at small steps in each coordinate direction.2 At every iteration, the Hooke- 2 R. Hooke and T.A. Jeeves, ‘‘Direct

Search Solution of Numerical and
Statistical Problems,’’ Journal of the
ACM (JACM), vol. 8, no. 2, pp. 212–
229, 1961.

Jeeves method evaluates f (x) and f (x± αe(i)) for a given step size α in every
coordinate direction from an anchoring point x. It accepts any improvement it may
find. If no improvements are found, it will decrease the step size. The process
repeats until the step size is sufficiently small. Figure 7.5 shows a few iterations
of the algorithm.
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x1

x
2

x1

x
2

x1

x
2

x1

x
2

Figure 7.5. The Hooke-Jeeves
method, proceeding left to right.
It begins with a large step size
but then reduces it once it cannot
improve by taking a step in any
coordinate direction.

One step of the Hooke-Jeeves method requires 2n function evaluations for
an n-dimensional problem, which can be expensive for problems with many
dimensions. TheHooke-Jeevesmethod is susceptible to local minima. Themethod
has been proven to converge on certain classes of functions.3 3 E.D. Dolan, R.M. Lewis, and V.

Torczon, ‘‘On the Local Conver-
gence of Pattern Search,’’ SIAM
Journal on Optimization, vol. 14,
no. 2, pp. 567–583, 2003.

7.4 Generalized Pattern Search

In contrast with the Hooke-Jeeves method, which searches in the coordinate
directions, generalized pattern search can search in arbitrary directions. A pattern P
can be constructed from a set of directions D about an anchoring point x with a
step size α according to:

P = {x + αd for each d in D} (7.7)

The Hooke-Jeeves method uses 2n directions for problems in n dimensions, but
generalized pattern search can use as few as n + 1.

For generalized pattern search to converge to a local minimum, certain con-
ditions must be met. The set of directions must be a positive spanning set, which
means that we can construct any point in Rn using a nonnegative linear combina-
tion of the directions in D. A positive spanning set ensures that at least one of the
directions is a descent direction from a location with a nonzero gradient.4

4 Convergence guarantees for gen-
eralized pattern search require that
all sampled points fall on a scaled
lattice. Each direction must thus be
a product d(j) = Gz(j) for a fixed
nonsingular n × n matrix G and
integer vector z. V. Torczon, ‘‘On
the Convergence of Pattern Search
Algorithms,’’ SIAM Journal of Op-
timization, vol. 7, no. 1, pp. 1–25,
1997.

We can determine whether a given set of directions D = {d(1), d(2), . . . , d(m)}
in Rn is a positive spanning set. First, we construct the matrix D whose columns
are the directions in D (see figure 7.6). The set of directions D is a positive span-
ning set if D has full row rank and if Dx = −D1 with x ≥ 0 has a solution.5 This 5 R.G. Regis, ‘‘On the Properties of

Positive Spanning Sets and Positive
Bases,’’ Optimization and Engineer-
ing, vol. 17, no. 1, pp. 229–262, 2016.

optimization problem is identical to the initialization phase of a linear program,
which is covered in chapter 11.
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function hooke_jeeves(f, x, α, ϵ, γ=0.5)
y, n = f(x), length(x)
while α > ϵ

improved = false
x_best, y_best = x, y
for i in 1 : n

for sgn in (-1,1)
x′ = x + sgn*α*basis(i, n)
y′ = f(x′)
if y′ < y_best

x_best, y_best, improved = x′, y′, true
end

end
end
x, y = x_best, y_best

if !improved
α *= γ

end
end
return x

end

Algorithm 7.5. The Hooke-Jeeves
method, which takes the target
function f, a starting point x, a start-
ing step size α, a tolerance ϵ, and
a step decay γ. The method runs
until the step size is less than ϵ and
the points sampled along the coor-
dinate directions do not provide an
improvement. Based on the imple-
mentation from A. F. Kaupe Jr, ‘‘Al-
gorithm 178: Direct Search,’’ Com-
munications of the ACM, vol. 6, no. 6,
pp. 313–314, 1963.

only positively spans the
cone

only positively spans 1d
space

positively spans R2

Figure 7.6. A valid pattern for gen-
eralized pattern search requires a
positive spanning set. These direc-
tions are stored in the set D.
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x(1) x(2) = x(3)

x(4) = x(5)

Figure 7.7. All previous points in
generalized pattern search lie on a
scaled lattice, ormesh. The lattice is
not explicitly constructed and need
not be axis-aligned.

The implementation of generalized pattern search in algorithm 7.6 contains
additional enhancements over the original Hooke-Jeeves method.6 First, the im- 6 These enhancements are pre-

sented in C. Audet and J. E. Dennis
Jr., ‘‘Mesh Adaptive Direct Search
Algorithms for Constrained Opti-
mization,’’ SIAM Journal on Opti-
mization, vol. 17, no. 1, pp. 188–217,
2006.

plementation is opportunistic—as soon as an evaluation improves the current best
design, it is accepted as the anchoring design point for the next iteration. Second,
the implementation uses dynamic ordering to accelerate convergence—a direction
that leads to an improvement is promoted to the beginning of the list of directions.
Figure 7.7 shows a few iterations of the algorithm.

7.5 Nelder-Mead Simplex Method

The Nelder-Mead simplex method7 uses a simplex to traverse the space in search 7 The original simplex method
is covered in J.A. Nelder and
R. Mead, ‘‘A Simplex Method
for Function Minimization,’’ The
Computer Journal, vol. 7, no. 4,
pp. 308–313, 1965. We incorpo-
rate the improvement in J. C. La-
garias, J. A. Reeds, M.H. Wright,
and P. E. Wright, ‘‘Convergence
Properties of the Nelder–Mead
Simplex Method in Low Dimen-
sions,’’ SIAM Journal on Optimiza-
tion, vol. 9, no. 1, pp. 112–147, 1998.

of a minimum. A simplex is a generalization of a tetrahedron to n-dimensional
space. A simplex in one dimension is a line, and in two dimensions it is a triangle
(see figure 7.8). The simplex derives its name from the fact that it is the simplest
possible polytope in any given space.
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function generalized_pattern_search(f, x, α, D, ϵ, γ=0.5)
y, n = f(x), length(x)
while α > ϵ

improved = false
for (i,d) in enumerate(D)

x′ = x + α*d
y′ = f(x′)
if y′ < y

x, y, improved = x′, y′, true
D = pushfirst!(deleteat!(D, i), d)
break

end
end
if !improved

α *= γ
end

end
return x

end

Algorithm 7.6. Generalized pat-
tern search, which takes the tar-
get function f, a starting point x,
a starting step size α, a set of search
directions D, a tolerance ϵ, and a
step decay γ. The method runs un-
til the step size is less than ϵ and
the points sampled along the coor-
dinate directions do not provide an
improvement.

Figure 7.8. A simplex in two di-
mensions is a triangle. In order for
the simplex to be valid, it must
have a nonzero area.

The Nelder-Mead method uses a series of rules that dictate how the simplex is
updated based on evaluations of the objective function at its vertices. A flowchart
outlines the procedure in figure 7.9, and algorithm 7.7 provides an implementa-
tion. Like the Hooke-Jeeves method, the simplex can move around while roughly
maintaining its size, and it can shrink down as it approaches an optimum.

The simplex consist of the points x(1), . . . , x(n+1). Let xh be the vertex with the
highest function value, let xs be the vertex with the second highest function value,
and let xℓ be the vertex with the lowest function value. Let x̄ be the mean of all
vertices except the highest point xh. Finally, for any design point xθ , let yθ = f (xθ)

be its objective function value. A single iteration then evaluates four simplex
operations:

Reflection. xr = x̄+ α(x̄− xh), reflects the highest-valued point over the centroid.
This typically moves the simplex from high regions toward lower regions. Here,
α > 0 and is typically set to 1.
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Initial simplex

Sort the simplex entries
Compute x̄

Compute the reflection point:
xr = x̄ + α(x̄− xh)

yr < yl?

yes

Compute the expansion point:
xe = x̄ + β(xr − x̄)

ye < yr?

yes

no

Replace xh with xe

no yr ≥ ys?

no

Replace xh with xr

Converged? yes Return best point

no

yes yr ≥ yh? no

Replace xh with xryes

Compute the contraction point:
xc = x̄ + γ(xh − x̄)

yc > yh?

no

yes

Replace xh with xc

Shrink by replacing all
x(i) with (x(i) + xℓ)/2

Figure 7.9. Flowchart for the
Nelder-Mead algorithm.
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Expansion. xe = x̄ + β(xr − x̄), like reflection, but the reflected point is sent even
further. This is done when the reflected point has an objective function value
less than all points in the simplex. Here, β > max(1, α) and is typically set to 2.

Contraction. xc = x̄ + γ(xh − x̄), the simplex is shrunk down by moving away
from the worst point. It is parameterized by γ ∈ (0, 1) which is typically set to
0.5.

Shrinkage. All points are moved toward the best point, typically halving the
separation distance.

Figure 7.10 shows the four simplex operations. Figure 7.11 shows several iterations
of the algorithm.

xh

xℓ

xs

x̄

reflection

xr

xh

xℓ

xs

x̄ xr

expansion

xe

xh

xℓ

xs

x̄

contraction

xc
xh

xℓ

xs

shrinkage
Figure 7.10. The Nelder-Mead sim-
plex operations visualized in two-
dimensions.The convergence criterion for the Nelder-Mead simplex method is unlike

Powell’s method in that it considers the variation in the function values rather
than the changes to the points in the design space. It compares the standard
deviation of the sample8 y(1), . . . , y(n+1) to a tolerance ǫ. This value is high for a 8 The standard deviation of the sample

is also called the uncorrected sample
standard deviation. In our case, it is
√

1
n+1 ∑

n+1
i=1

(
y(i) − ȳ

)2, where ȳ is
the mean of y(1), . . . , y(n+1).

simplex over a highly curved region, and it is low for a simplex over a flat region.
A highly curved region indicates that there is still further optimization possible.

7.6 Divided Rectangles

The divided rectangles algorithm, or DIRECT for DIvided RECTangles, is a Lip-
schitzian optimization approach, similar in some ways to the Shubert-Piyavskii
method described in section 3.6.9 However, it eliminates the need for specifying a

9 D.R. Jones, C.D. Perttunen, and
B. E. Stuckman, ‘‘Lipschitzian Op-
timization Without the Lipschitz
Constant,’’ Journal of Optimization
Theory and Application, vol. 79, no. 1,
pp. 157–181, 1993.

Lipschitz constant, and it can be more efficiently extended to multiple dimensions.
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Figure 7.11. The Nelder-Mead
method, proceeding left to right
and top to bottom.
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function nelder_mead(f, S, ϵ; α=1.0, β=2.0, γ=0.5)
Δ, y_arr = Inf, f.(S)
while Δ > ϵ

p = sortperm(y_arr) # sort lowest to highest
S, y_arr = S[p], y_arr[p]
xl, yl = S[1], y_arr[1] # lowest
xh, yh = S[end], y_arr[end] # highest
xs, ys = S[end-1], y_arr[end-1] # second-highest
xm = mean(S[1:end-1]) # centroid
xr = xm + α*(xm - xh) # reflection point
yr = f(xr)

if yr < yl
xe = xm + β*(xr-xm) # expansion point
ye = f(xe)
S[end],y_arr[end] = ye < yr ? (xe, ye) : (xr, yr)

elseif yr > ys
if yr ≤ yh

xh, yh, S[end], y_arr[end] = xr, yr, xr, yr
end
xc = xm + γ*(xh - xm) # contraction point
yc = f(xc)
if yc > yh

for i in 2 : length(y_arr)
S[i] = (S[i] + xl)/2
y_arr[i] = f(S[i])

end
else

S[end], y_arr[end] = xc, yc
end

else
S[end], y_arr[end] = xr, yr

end

Δ = std(y_arr, corrected=false)
end
return S[argmin(y_arr)]

end

Algorithm 7.7. The Nelder-Mead
simplex method, which takes the
objective function f, a starting sim-
plex S consisting of a list of vec-
tors, and a tolerance ϵ. The Nelder-
Mead parameters can be speci-
fied as well and default to recom-
mended values.
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The notion of Lipschitz continuity can be extended to multiple dimensions. If
f is Lipschitz continuous over a domain X with Lipschitz constant ℓ > 0, then
for a given design x(1) and y = f (x(1)), the circular cone

f (x(1))− ℓ‖x− x(1)‖2 (7.8)

forms a lower bound of f . Given m function evaluations with design points
{x(1), . . . , x(m)}, we can construct a superposition of these lower bounds by taking
their maximum:

maximize
i

f (x(i))− ℓ‖x− x(i)‖2 (7.9)

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

Lipschitz lower bound

−2 −1 0 1 2

x1

divided rectangles lower bound Figure 7.12. The Lipschitz lower
bound is an intersection of cones,
which creates complicated surfaces
in multidimensional space. The di-
vided rectangle lower bound iso-
lates each lower-bound cone to
its own hyper-rectangular region,
making it trivial to compute the
minimum value in each region
given a Lipschitz constant.

The Shubert-Piyavskii method samples at a point where the bound derived
from a known Lipschitz constant is lowest. Unfortunately, a Lipschitz lower bound
has intricate geometry whose complexity increases with the dimensionality of
the design space. The left contour plot in figure 7.12 shows such a lower bound
using five function evaluations. The right contour plot shows the approximation
made by DIRECT, which divides the region into hyper-rectangles—one centered
about each design point. Making this assumption allows for the rapid calculation
of the minimum of the lower bound.
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The DIRECT method does not assume a Lipschitz constant is known. Fig-
ures 7.13 and 7.14 show lower bounds constructed using Lipschitz continuity
and the DIRECT approximation, respectively, for several different Lipschitz con-
stants. Notice that the location of the minimum changes as the Lipschitz constant
changes, with small values of ℓ leading to designs near the lowest function evalua-
tions and larger values of ℓ leading to designs the farthest from previous function
evaluations.
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Figure 7.13. The Lipschitz lower
bound for different Lipschitz con-
stants ℓ. Not only does the esti-
mated minimum change locally as
the Lipschitz constant is varied, the
region in which the minimum lies
can vary as well.
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Figure 7.14. The DIRECT lower
bound for different Lipschitz con-
stants ℓ. The lower bound is not
continuous. The minimum does
not change locally but can change
regionally as the Lipschitz constant
changes.
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7.6.1 Univariate DIRECT
In one dimension, DIRECT recursively divides intervals into thirds and then
samples the objective function at the center of the intervals as shown in figure 7.15.
This scheme is in contrast with the Shubert-Piyavskii method, where sampling
occurs at a point where the bound derived from a known Lipschitz constant is
lowest.

before division:
after division:

Figure 7.15. Center-point sampling,
using the DIRECT scheme, divides
intervals into thirds.

For an interval [a, b] with center c = (a + b)/2, the lower bound based on f (c)

is:
f (x) ≥ f (c)− ℓ|x− c| (7.10)

where ℓ is a Lipschitz constant that is unknown to us. The lowest value that the
bound obtains on that interval is f (c)− ℓ(b− a)/2, and it occurs at the edges of
the interval.

Even though we do not know ℓ, we can deduce that the lower bound of some
intervals are lower than others. If we have two intervals of the same length, for
example, and the first one has a lower evaluation at the center point than the
second one, then the lower bound of the first interval is lower than that of the
second. Although this does not entail that the first interval contains a minimizer,
it is an indication that we may want to focus our search in that interval.

During our search, we will have many intervals [a1, b1], . . . , [an, bn] of different
widths. We can plot our intervals according to their center value and interval
width, as we do in figure 7.16. The lower bound for each interval is the vertical
intercept of a line of slope ℓ through its center point. The center of the interval
with the lowest lower bound will be the first point intersected as we shift a line
with slope ℓ upwards from below.

DIRECT splits all intervals for which a Lipschitz constant exists such that
they have the lowest lower bound, as shown in figure 7.17. We refer to these
selected intervals as potentially optimal. Any interval may technically contain
the optimum, though the selected points heuristically have the best chance of
containing the optimum.

One iteration of the one-dimensional DIRECT algorithm consists of identifying
the set of potentially optimal intervals and then dividing each interval into thirds.
Example 7.1 demonstrates the univariate DIRECT method.
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f (ci)− ℓ(bi − ai)/2

f (ci)

(bi − ai)/2

slope = ℓ
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Figure 7.16. Interval selection for
a particular Lipschitz constant ℓ.
Black dots represent DIRECT inter-
vals and the corresponding func-
tion evaluations at their centers.
A black line of slope ℓ is drawn
through the dot belonging to the se-
lected interval. All other dots must
lie on or above this line.
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Figure 7.17. The potentially op-
timal intervals for the DIRECT
method form a piecewise bound-
ary that encloses all intervals along
the lower-right. Each dot corre-
sponds to an interval.
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Consider the function f (x) = sin(x) + sin(2x) + sin(4x) + sin(8x) on the
interval [−2, 2]with a global minimizer near−0.272. Optimization is difficult
because of multiple local minima.

The figure below shows the progression of the univariate DIRECTmethod,
with intervals chosen for splitting rendered in blue. The left side shows the
intervals overlaid on the objective function. The right side shows the intervals
as scatter points in the interval half-width versus center value space.
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Example 7.1. The DIRECT method
applied to a univariate function.
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7.6.2 Multivariate DIRECT
In multiple dimensions, we divide rectangles (or hyper-rectangles in more than
two dimensions) instead of intervals. Similar to the univariate case, we divide the
rectangles into thirds along the axis directions. Before commencing the division
of the rectangles, DIRECT normalizes the search space to be the unit hypercube.

As illustrated in figure 7.18, the choice of ordering of the directions when
splitting the unit hypercube matters. DIRECT prioritizes the assignment of larger
rectangles for the points with lower function evaluations. Larger rectangles are
prioritized for additional splitting.

sampling

horizontal split vertical split

vertical split horizontal split

Figure 7.18. Interval splitting in
multiple dimensions (using DI-
RECT) requires choosing an order-
ing for the split dimensions.

When splitting a regionwithout equal side lengths, only the longest dimensions
are split (figure 7.19). Splitting then proceeds on these dimensions in the same
manner as with a hypercube.

Figure 7.19. DIRECTwill split only
the longest dimensions of hyper-
rectangles.

The set of potentially optimal intervals is obtained as it is with one dimension.
The lower bound for each hyper-rectangle can be computed based on the longest
side length and center value. We can construct a diagram similar to figure 7.16 to
identify the potentially optimal rectangles.10 10 As an additional requirement for

selection, DIRECT also requires
that the lower bound for the inter-
val improve the current best value
by a nontrivial amount.

7.6.3 Implementation
DIRECT (algorithm 7.8) is best understood when it is broken down into subrou-
tines. We present these subroutines below.

Normalization to the unit hypercube is done by algorithm 7.9.
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function direct(f, a, b, ϵ, k_max)
g = reparameterize_to_unit_hypercube(f, a, b)
intervals = Intervals()
n = length(a)
c = fill(0.5, n)
interval = Interval(c, g(c), fill(0, n))
add_interval!(intervals, interval)
c_best, y_best = copy(interval.c), interval.y

for k in 1 : k_max
S = get_opt_intervals(intervals, ϵ, y_best)
to_add = Interval[]
for interval in S

append!(to_add, divide(g, interval))
dequeue!(intervals[min_depth(interval)])

end
for interval in to_add

add_interval!(intervals, interval)
if interval.y < y_best

c_best, y_best = copy(interval.c), interval.y
end

end
end

return rev_unit_hypercube_parameterization(c_best, a, b)
end

Algorithm 7.8. DIRECT, which
takes the multidimensional objec-
tive function f, vector of lower
bounds a, vector of upper bounds
b, tolerance parameter ϵ, and num-
ber of iterations k_max. It returns
the best coordinate.

rev_unit_hypercube_parameterization(x, a, b) = x.*(b-a) + a
function reparameterize_to_unit_hypercube(f, a, b)

Δ = b-a
return x->f(x.*Δ + a)

end

Algorithm 7.9. A function that cre-
ates a function defined over the
unit hypercube that is a reparam-
eterized version of the function f
defined over the hypercube with
lower and upper bounds a and b.
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Computing the set of potentially optimal rectangles can be done efficiently
(algorithm 7.10). We use the fact that the interval width can only take on powers
of one-third, and thus many of the points will share the same x coordinate. For
any given x coordinate, only the one with the lowest y value can be a potentially
optimal interval. We store the rectangular intervals according to their depth and
then in a priority queue according to their centerpoint value.

using DataStructures
struct Interval

c
y
depths

end
min_depth(interval) = minimum(interval.depths)
const Intervals = Dict{Int,PriorityQueue{Interval, Float64}}
function add_interval!(intervals, interval)

d = min_depth(interval)
if !haskey(intervals, d)

intervals[d] = PriorityQueue{Interval, Float64}()
end
return enqueue!(intervals[d], interval, interval.y)

end

Algorithm 7.10. The data structure
used in DIRECT. Here, Interval
has three fields: the interval center
c, the center point value y = f(c),
and the number of divisions in
each dimension depths. The func-
tion add_interval! inserts a new
Interval into the data structure.

We can use this data structure to obtain all potentially optimal intervals (algo-
rithm 7.11). The algorithm proceeds from lowest interval width to highest interval
width. For each point, we first determine whether it is above or below the line
joining the previous two points. If it is below, we skip it. The same determination
is then made for the next point.

Finally, we need a method for dividing the intervals. This is implemented by
the divide method (algorithm 7.12).

The intervals obtained from running DIRECT in two dimensions are visualized
in figure 7.20. Two iterations of DIRECT in two dimensions are worked out in
example 7.2.
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function get_opt_intervals(intervals, ϵ, y_best)
max_depth = maximum(keys(intervals))
stack = [DataStructures.peek(intervals[max_depth])[1]]
d = max_depth-1
while d ≥ 0

if haskey(intervals, d) && !isempty(intervals[d])
interval = DataStructures.peek(intervals[d])[1]
x, y = 0.5*3.0^(-min_depth(interval)), interval.y

while !isempty(stack)
interval1 = stack[end]
x1 = 0.5*3.0^(-min_depth(interval1))
y1 = interval1.y
l1 = (y - y1)/(x - x1)
if y1 - l1*x1 > y_best - ϵ || y < y1

pop!(stack)
elseif length(stack) > 1

interval2 = stack[end-1]
x2 = 0.5*3.0^(-min_depth(interval2))
y2 = interval2.y
l2 = (y1 - y2)/(x1 - x2)
if l2 > l1

pop!(stack)
else

break
end

else
break

end
end

push!(stack, interval) # add new point
end
d -= 1

end
return stack

end

Algorithm 7.11. A routine for ob-
taining the potentially optimal in-
tervals, where intervals is of type
Intervals, ϵ is a tolerance parame-
ter, and y_best is the best function
evaluation.
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function divide(f, interval)
c, d, n = interval.c, min_depth(interval), length(interval.c)
dirs = findall(interval.depths .== d)
cs = [(c + 3.0^(-d-1)*basis(i,n),

c - 3.0^(-d-1)*basis(i,n)) for i in dirs]
vs = [(f(C[1]), f(C[2])) for C in cs]
minvals = [min(V[1], V[2]) for V in vs]

intervals = Interval[]
depths = copy(interval.depths)
for j in sortperm(minvals)

depths[dirs[j]] += 1
C, V = cs[j], vs[j]
push!(intervals, Interval(C[1], V[1], copy(depths)))
push!(intervals, Interval(C[2], V[2], copy(depths)))

end
push!(intervals, Interval(c, interval.y, copy(depths)))
return intervals

end

Algorithm 7.12. The divide rou-
tine for dividing an interval, where
f is the objective function and
interval is the interval to be di-
vided. It returns a list of the result-
ing smaller intervals.

7.7 Summary

• Direct methods rely solely on the objective function and do not use derivative
information.

• Cyclic coordinate search optimizes one coordinate direction at a time.

• Powell’s method adapts the set of search directions based on the direction of
progress.

• Hooke-Jeeves searches in each coordinate direction from the current point
using a step size that is adapted over time.

• Generalized pattern search is similar to Hooke-Jeeves, but it uses fewer search
directions that positively span the design space.

• The Nelder-Mead simplex method uses a simplex to search the design space,
adaptively expanding and contracting the size of the simplex in response to
evaluations of the objective function.

• The divided rectangles algorithm extends the Shubert-Piyavskii approach to
multiple dimensions and does not require specifying a valid Lipschitz constant.
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Figure 7.20. The DIRECT method
after 16 iterations on the Branin
function, appendix B.3. Each cell is
bordered by white lines. The cells
are much denser around the min-
ima of the Branin function, as the
DIRECT method procedurally in-
creases its resolution in those re-
gions.
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Consider using DIRECT to optimize the flower function (appendix B.4)
over x1 ∈ [−1, 3], x2 ∈ [−2, 1]. The function is first normalized to the unit
hypercube such that we optimize x′1, x′2 ∈ [0, 1]:

f (x′1, x′2) = flower(4x′1 − 1, 3x′2 − 2)

The objective function is sampled at [0.5, 0.5] to obtain 0.158. We have a
single interval with center [0.5, 0.5] and side lengths [1, 1]. The interval is
divided twice, first into thirds in x′1 and then the center interval is divided
into thirds in x′2.

x′10 1

x′2

0

1

We now have five intervals:

interval center side lengths half width center value
1 [0.25, 0.50] [1/3, 1] 1/2 0.500

2 [0.75, 0.50] [1/3, 1] 1/2 1.231

3 [0.50, 0.50] [1/3, 1/3] 1/6 0.158

4 [0.50, 0.25] [1/3, 1/3] 1/6 2.029

5 [0.50, 0.75] [1/3, 1/3] 1/6 1.861
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We next split on the two intervals centered at [0.25, 0.5] and [0.5, 0.5].

Example 7.2. The first two itera-
tions of DIRECT worked out in de-
tail.
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7.8 Exercises

Exercise 7.1. Previous chapters covered methods that leverage the derivative
to descend toward a minimum. Direct methods are able to use only zero-order
information—evaluations of f . Howmany evaluations are needed to approximate
the derivative and the Hessian of an n-dimensional objective function using finite
differencemethods?Why do you think it is important to have zero-ordermethods?

Exercise 7.2. Design an objective function and a starting point x0 such that Hooke-
Jeeves will fail to attain a reduction in the objective function. You need to choose
x0 such that it is not a local minimizer.

Exercise 7.3. Is the design point obtained using the Hooke-Jeeves method guar-
anteed to be within ǫ of a local minimum?

Exercise 7.4. Give an example of a concrete engineering problem where you may
not be able to compute analytical derivatives.

Exercise 7.5. State a difference between the divided rectangles algorithm in one
dimension and the Shubert-Piyavskii method.

Exercise 7.6. Suppose our search algorithmhas us transition from x(k) = [1, 2, 3, 4]

to x(k+1) = [2, 2, 2, 4]. Could our search algorithm be (a) cyclic coordinate search,
(b) Powell’s method, (c) both a and b, or (d) neither a nor b? Why?





8 Stochastic Methods

This chapter presents a variety of stochastic methods that use randomization strate-
gically to help explore the design space for an optimum. Randomness can help es-
cape local optima and increase the chances of finding a global optimum. Stochastic
methods typically use pseudo-random number generators to ensure repeatability.1 1 Although pseudo-random num-

ber generators produce numbers
that appear random, they are ac-
tually a result of a determinis-
tic process. Pseudo-random num-
bers can be produced through calls
to the rand function. The process
can be reset to an initial state us-
ing the seed! function from the
Random.jl package.

A large amount of randomness is generally ineffective because it prevents us from
effectively using previous evaluation points to help guide the search. This chapter
discusses a variety of ways to control the degree of randomness in our search.

8.1 Noisy Descent

Adding stochasticity to gradient descent can be beneficial in large nonlinear
optimization problems. Saddle points, where the gradient is very close to zero,
can cause descent methods to select step sizes that are too small to be useful. One
approach is to add Gaussian noise at each descent step:2 2 G. Hinton and S. Roweis,

‘‘Stochastic Neighbor Embed-
ding,’’ in Advances in Neural
Information Processing Systems
(NIPS), 2003.

x(k+1) ← x(k) + αg(k) + ǫ(k) (8.1)

where ǫ(k) is zero-mean Gaussian noise with standard deviation σ. The amount
of noise is typically reduced over time. The standard deviation of the noise is
typically a decreasing sequence σ(k) such as 1/k.3 Algorithm 8.1 provides an 3 The Hinton and Roweis paper

used a fixed standard deviation for
the first 3,500 iterations and set the
standard deviation to zero there-
after.

implementation of this method. Figure 8.1 compares descent with and without
noise on a saddle function.

A common approach for training neural networks is stochastic gradient descent,
which uses a noisy gradient approximation. In addition to helping traverse past
saddle points, evaluating noisy gradients using randomly chosen subsets of the
training data4 is significantly less expensive computationally than calculating the 4 These subsets are called batches.
true gradient at every iteration.
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mutable struct NoisyDescent <: DescentMethod
submethod
σ
k

end
function init!(M::NoisyDescent, f, ∇f, x)

init!(M.submethod, f, ∇f, x)
M.k = 1
return M

end
function step!(M::NoisyDescent, f, ∇f, x)

x = step!(M.submethod, f, ∇f, x)
σ = M.σ(M.k)
x += σ.*randn(length(x))
M.k += 1
return x

end

Algorithm 8.1. A noisy descent
method, which augments another
descent method with additive
Gaussian noise. The method
takes another DescentMethod
submethod, a noise sequence σ,
and stores the iteration count k.

Convergence guarantees for stochastic gradient descent require that the positive
step sizes be chosen such that:

∞

∑
k=1

α(k) = ∞
∞

∑
k=1

(

α(k)
)2

< ∞ (8.2)

These conditions ensure that the step sizes decrease and allow the method to
converge, but not too quickly so as to become stuck away from a local minimum. x1

x
2

stochastic gradient descent
steepest descent

Figure 8.1. Adding stochasticity
to a descent method helps with
traversing saddle points such as
f (x) = x2

1 − x2
2 shown here. Due

to the initialization, the steepest
descent method converges to the
saddle point where the gradient is
zero.

8.2 Mesh Adaptive Direct Search

The generalized pattern search methods covered in section 7.4 restricted local
exploration to a fixed set of directions. In contrast, mesh adaptive direct search uses
random positive spanning directions.5

5 This section follows the lower
triangular mesh adaptive direct
search given by C. Audet and J. E.
Dennis Jr., ‘‘Mesh Adaptive Direct
Search Algorithms for Constrained
Optimization,’’ SIAM Journal on
Optimization, vol. 17, no. 1, pp. 188–
217, 2006.

The procedure used to sample positive spanning sets (see example 8.1) begins
by constructing an initial linearly spanning set in the form of a lower triangular
matrix L. The diagonal terms in L are sampled from ±1/

√
α(k), where α(k) is the

step size at iteration k. The lower components of L are sampled from
{

−1/
√

α(k) + 1,−1/
√

α(k) + 2, . . . , 1/
√

α(k) − 1
}

(8.3)
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Consider positive spanning sets constructed from the nonzero directions
d1, d2 ∈ {−1, 0, 1}. There are 8 positive spanning sets with 3 elements that
can be constructed from these directions:

Example 8.1. The positive span-
ning sets with unit ℓ1-length direc-
tions for R2.

The rows and columns of L are then randomly permuted to obtain a matrix D

whose columns correspond to n directions that linearly span Rn. The maximum
magnitude among these directions is 1/

√
α(k).

Two common methods for obtaining a positive spanning set from the linearly
spanning set are to add one additional direction d(n+1) = −∑

n
i=1 d(i) and to add

n additional directions d(n+j) = −d(j) for j in {1, . . . , n}. We use the first method
in algorithm 8.2.

The step size α starts at 1, is always a power of 4, and never exceeds 1. Using a
power of 4 causes the maximum possible step size taken in each iteration to be
scaled by a factor of 2, as the maximum step size α/

√
α has length 4m/

√
4m = 2m

for integer m < 1. The step size is updated according to:

α(k+1) ←







α(k)/4 if no improvement was found in this iteration
min(1, 4α(k)) otherwise

(8.4)
Mesh adaptive direct search is opportunistic but cannot support dynamic order-

ing6 since, after a successful iteration, the step size is increased, and another step 6 See section 7.4.
in the successful direction would lie outside of the mesh. The algorithm queries a
new design point along the accepted descent direction. If f (x(k) = x(k−1) + αd) <

f (x(k−1)), then the queried point is x(k−1) + 4αd = x(k) + 3αd. The procedure is
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function rand_positive_spanning_set(α, n)
δ = round(Int, 1/sqrt(α))
L = Matrix(Diagonal(δ*rand([1,-1], n)))
for i in 1 : n-1

for j in i+1:n
L[i,j] = rand(-δ+1:δ-1)

end
end
D = L[randperm(n),:]
D = L[:,randperm(n)]
D = hcat(D, -sum(D,dims=2))
return [D[:,i] for i in 1 : n+1]

end

Algorithm 8.2. Randomly sam-
pling a positive spanning set of
n + 1 directions according to mesh
adaptive direct search with step
size α and number of dimensions
n.

outlined in algorithm 8.3. Figure 8.2 illustrates how this algorithm explores the
search space.

8.3 Simulated Annealing

Simulated annealing7 borrows inspiration from metallurgy.8 Temperature is used 7 S. Kirkpatrick, C.D. Gelatt Jr.,
and M.P. Vecchi, ‘‘Optimization
by Simulated Annealing,’’ Science,
vol. 220, no. 4598, pp. 671–680,
1983.
8 Annealing is a process in which a
material is heated and then cooled,
making it more workable. When
hot, the atoms in the material are
more free to move around, and,
through random motion, tend to
settle into better positions. A slow
cooling brings the material to an
ordered, crystalline state. A fast,
abrupt quenching causes defects
because the material is forced to
settle in its current condition.

to control the degree of stochasticity during the randomized search. The tem-
perature starts high, allowing the process to freely move about the search space,
with the hope that in this phase the process will find a good region with the
best local minimum. The temperature is then slowly brought down, reducing
the stochasticity and forcing the search to converge to a minimum. Simulated
annealing is often used on functions with many local minima due to its ability to
escape local minima.

At every iteration, a candidate transition from x to x′ is sampled from a transi-
tion distribution T and is accepted with probability







1 if ∆y ≤ 0

min(e−∆y/t, 1) if ∆y > 0
(8.5)

where ∆y = f (x′)− f (x) is the difference in the objective and t is the temperature.
It is this acceptance probability, known as the Metropolis criterion, that allows the
algorithm to escape from local minima when the temperature is high.
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function mesh_adaptive_direct_search(f, x, ϵ)
α, y, n = 1, f(x), length(x)
while α > ϵ

improved = false
for (i,d) in enumerate(rand_positive_spanning_set(α, n))

x′ = x + α*d
y′ = f(x′)
if y′ < y

x, y, improved = x′, y′, true
x′ = x + 3α*d
y′ = f(x′)
if y′ < y

x, y = x′, y′
end
break

end
end
α = improved ? min(4α, 1) : α/4

end
return x

end

Algorithm 8.3. Mesh adaptive di-
rect search for an objective function
f , an initial design x, and a toler-
ance ϵ.

Figure 8.2. Mesh adaptive direct
search proceeding left to right and
top to bottom.
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Figure 8.3. Several annealing sched-
ules commonly used in simulated
annealing. The schedules have an
initial temperature of 10.

The temperature parameter t controls the acceptance probability. An annealing
schedule is used to slowly bring down the temperature as the algorithm pro-
gresses, as illustrated by figure 8.3. The temperature must be brought down to
ensure convergence. If it is brought down too quickly, the search method may not
cover the portion of the search space containing the global minimum.

It can be shown that a logarithmic annealing schedule of t(k) = t(1) ln(2)/ ln(k+ 1)

for the kth iteration is guaranteed to asymptotically reach the global optimum
under certain conditions,9 but it can be very slow in practice. The exponential

9 B. Hajek, ‘‘Cooling Schedules for
Optimal Annealing,’’ Mathematics
of Operations Research, vol. 13, no. 2,
pp. 311–329, 1988.

annealing schedule, which is more common, uses a simple decay factor:

t(k+1) = γt(k) (8.6)

for some γ ∈ (0, 1). Another common annealing schedule, fast annealing,10 uses a

10 H. Szu and R. Hartley, ‘‘Fast Sim-
ulated Annealing,’’ Physics Letters
A, vol. 122, no. 3-4, pp. 157–162,
1987.

temperature of
t(k) =

t(1)

k
(8.7)

A basic implementation of simulated annealing is provided by algorithm 8.4.
Example 8.2 shows the effect different transition distributions and annealing
schedules have on the optimization process.

function simulated_annealing(f, x, T, t, k_max)
y = f(x)
x_best, y_best = x, y
for k in 1 : k_max

x′ = x + rand(T)
y′ = f(x′)
Δy = y′ - y
if Δy ≤ 0 || rand() < exp(-Δy/t(k))

x, y = x′, y′
end
if y′ < y_best

x_best, y_best = x′, y′
end

end
return x_best

end

Algorithm 8.4. Simulated anneal-
ing, which takes as input an objec-
tive function f, an initial point x, a
transition distribution T, an anneal-
ing schedule t, and the number of
iterations k_max.

A more sophisticated algorithm was introduced by Corana et al. in 1987 that
allows for the step size to change during the search.11 Rather than using a fixed

11 A. Corana, M. Marchesi, C. Mar-
tini, and S. Ridella, ‘‘Minimiz-
ing Multimodal Functions of Con-
tinuous Variables with the ‘Sim-
ulated Annealing’ Algorithm,’’
ACM Transactions on Mathematical
Software, vol. 13, no. 3, pp. 262–280,
1987.
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We can use simulated annealing to optimize Ackley’s function, appendix B.1.
Ackley’s function has many local minima, making it easy for gradient-based
methods to get stuck.

Suppose we start at x(1) = [15, 15] and run 100 iterations. Below we show
the distribution over iterations for multiple runs with different combinations
of three zero-mean, diagonal covariance (σI) Gaussian transition distribu-
tions, and three different temperature schedules t(k) = t(1)/k.
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In this case, the spread of the transition distribution has the greatest impact
on performance.

Example 8.2. Exploring the effect
of distribution variance and tem-
perature on the performance of
simulated annealing. The blue re-
gions indicate the 5% to 95% and
25% to 75% empirical Gaussian
quantiles of the objective function
value.
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transition distribution, this adaptive simulated annealing method keeps track of
a separate step size v for each coordinate direction. For a given point x, a cycle of
random moves is performed in each coordinate direction i according to:

x′ = x + rviei (8.8)

where r is drawn uniformly at random from [1,−1] and vi is the maximum step
size in the ith coordinate direction. Each new point is accepted according to the
Metropolis criterion. The number of accepted points in each coordinate direction
is stored in a vector a.

After ns cycles, the step sizes are adjusted with the aim to maintain an approxi-
mately equal number of accepted and rejected designs with an average acceptance
rate near one-half. Rejecting too many moves is a waste of computational effort,
while accepting too many moves indicates that the configuration is evolving too
slowly because candidate points are too similar to the current location. The update
formula used by Corana et al. is:

vi =







vi

(

1 + ci
ai/ns−0.6

0.4

)

if ai > 0.6ns

vi

(

1 + ci
0.4−ai/ns

0.4

)−1
if ai < 0.4ns

vi otherwise
(8.9)

The ci parameter controls the step variation along each direction and is typically
set to 2 as shown in figure 8.4. An implementation of the update is shown in
algorithm 8.5.
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Figure 8.4. The step multiplication
factor as a function of acceptance
rate for c = 2.

function corana_update!(v, a, c, ns)
for i in 1 : length(v)

ai, ci = a[i], c[i]
if ai > 0.6ns

v[i] *= (1 + ci*(ai/ns - 0.6)/0.4)
elseif ai < 0.4ns

v[i] /= (1 + ci*(0.4-ai/ns)/0.4)
end

end
return v

end

Algorithm 8.5. The update for-
mula used by Corana et al. in adap-
tive simulated annealing, where v
is a vector of coordinate step sizes,
a is a vector of the number of ac-
cepted steps in each coordinate di-
rection, c is a vector of step scaling
factors for each coordinate direc-
tion, and ns is the number of cycles
before running the step size adjust-
ment.
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Temperature reduction occurs every nt step adjustments, which is every ns · nt

cycles. The original implementation simply multiplies the temperature by a re-
duction factor.

The process is terminated when the temperature sinks low enough such that
improvement can no longer be expected. Termination occurs when themost recent
function value is no farther than ǫ from the previous nǫ iterations and the best
function value obtained over the course of execution. Algorithm 8.6 provides an
implementation and the algorithm is visualized in figure 8.5.

8.4 Cross-Entropy Method

The cross-entropy method,12 in contrast with the methods we have discussed so 12 R. Y. Rubinstein and D. P. Kroese,
The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimiza-
tion, Monte-Carlo Simulation, and
Machine Learning. Springer, 2004.

far in this chapter, maintains an explicit probability distribution over the design
space.13 This probability distribution, often called a proposal distribution, is used to

13 The name of this method comes
from the fact that the process of
fitting the distribution involves
minimizing cross-entropy, which is
also called the Kullback–Leibler di-
vergence. Under certain conditions,
minimizing the cross-entropy cor-
responds to finding the maximum
likelihood estimate of the parame-
ters of the distribution.

propose new samples for the next iteration. At each iteration, we sample from the
proposal distribution and then update the proposal distribution to fit a collection
of the best samples. The aim at convergence is for the proposal distribution to
focus on the global optima. Algorithm 8.7 provides an implementation.

The cross-entropy method requires choosing a family of distributions parame-
terized byθ. One common choice is the family ofmultivariate normal distributions
parameterized by a mean vector and a covariance matrix. The algorithm also
requires us to specify the number of elite samples, melite, to use when fitting the
parameters for the next iteration.

Depending on the choice of distribution family, the process of fitting the distri-
bution to the elite samples can be done analytically. In the case of the multivariate
normal distribution, the parameters are updated according to the maximum
likelihood estimate:

µ(k+1) =
1

melite

melite
∑
i=1

x(i) (8.10)

Σ
(k+1) =

1

melite

melite
∑
i=1

(x(i) − µ(k+1))(x(i) − µ(k+1))⊤ (8.11)

Example 8.3 applies the cross-entropy method to a simple function. Figure 8.6
shows several iterations on a more complex function. Example 8.4 shows the
potential limitation of using a multivariate normal distribution for fitting elite
samples.
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function adaptive_simulated_annealing(f, x, v, t, ϵ;
ns=20, nϵ=4, nt=max(100,5length(x)),
γ=0.85, c=fill(2,length(x)) )

y = f(x)
x_best, y_best = x, y
y_arr, n, U = [], length(x), Uniform(-1.0,1.0)
a,counts_cycles,counts_resets = zeros(n), 0, 0

while true
for i in 1:n

x′ = x + basis(i,n)*rand(U)*v[i]
y′ = f(x′)
Δy = y′ - y
if Δy < 0 || rand() < exp(-Δy/t)

x, y = x′, y′
a[i] += 1
if y′ < y_best; x_best, y_best = x′, y′; end

end
end

counts_cycles += 1
counts_cycles ≥ ns || continue

counts_cycles = 0
corana_update!(v, a, c, ns)
fill!(a, 0)
counts_resets += 1
counts_resets ≥ nt || continue

t *= γ
counts_resets = 0
push!(y_arr, y)

if !(length(y_arr) > nϵ && y_arr[end] - y_best ≤ ϵ &&
all(abs(y_arr[end]-y_arr[end-u]) ≤ ϵ for u in 1:nϵ))

x, y = x_best, y_best
else

break
end

end
return x_best

end

Algorithm 8.6. The adaptive simu-
lated annealing algorithm, where
f is the multivariate objective func-
tion, x is the starting point, v is
starting step vector, t is the start-
ing temperature, and ϵ is the termi-
nation criterion parameter. The op-
tional parameters are the number
of cycles before running the step
size adjustment ns, the number of
cycles before reducing the temper-
ature nt, the number of succes-
sive temperature reductions to test
for termination nϵ, the tempera-
ture reduction coefficient γ, and the
direction-wise varying criterion c.

Below is a flowchart for the
adaptive simulated annealing algo-
rithm as presented in the original
paper.

Initialize Parameters

Perform a cycle of random moves,
each along one coordinate direc-
tion. Accept or reject each point
according to the Metropolis crite-
rion. Record the optimum point
reached so far.

No. cycles ≥ ns?

Adjust step vector v.
Reset no. cycles to 0.

No. step adjustments ≥ nt?

Reduce temperature.
Reset no. adjustments to 0.
Add point to optimum list.

Stopping criterion satisfied?

End

yes

yes

yes

no

no

no
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Figure 8.5. Simulated annealing
with an exponentially decaying
temperature, where the histograms
indicate the probability of simu-
lated annealing being at a partic-
ular position at that iteration.

using Distributions
function cross_entropy_method(f, P, k_max, m=100, m_elite=10)

for k in 1 : k_max
samples = rand(P, m)
order = sortperm([f(samples[:,i]) for i in 1:m])
P = fit(typeof(P), samples[:,order[1:m_elite]])

end
return P

end

Algorithm 8.7. The cross-entropy
method, which takes an objective
function f to be minimized, a pro-
posal distribution P, an iteration
count k_max, a sample size m, and
the number of samples to usewhen
refitting the distribution m_elite.
It returns the updated distribution
over where the global minimum is
likely to exist.
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We can use Distributions.jl to represent, sample from, and fit proposal
distributions. The parameter vector θ is replaced by a distribution P. Calling
rand(P,m) will produce an n × m matrix corresponding to m samples of
n-dimensional samples from P, and calling fit will fit a new distribution of
the given input type.

import Random: seed!
import LinearAlgebra: norm
seed!(0) # set random seed for reproducible results
f = x->norm(x)
μ = [0.5, 1.5]
Σ = [1.0 0.2; 0.2 2.0]
P = MvNormal(μ, Σ)
k_max = 10
P = cross_entropy_method(f, P, k_max)
@show P.μ

P.μ = [-6.13623e-7, -1.37216e-6]

Example 8.3. An example of using
the cross-entropy method.

x1

x
2

x1 x1 x1

Figure 8.6. The cross-entropy
method with m = 40 applied to
the Branin function (appendix B.3)
using a multivariate Gaussian pro-
posal distribution. The 10 elite sam-
ples in each iteration are in red.
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The distribution family should be flexible enough to capture the relevant
features of the objective function. Here we show the limitations of using
a normal distribution on a multimodal objective function, which assigns
greater density in between the twominima. Amixture model is able to center
itself over each minimum.

−5 0 5
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0.1

0.2

0.3

x

f

mixture model fit
normal fit
samples

Example 8.4. The normal distribu-
tion is unable to capture multiple
local minima, in contrast to mix-
ture models which can maintain
several.

8.5 Natural Evolution Strategies

Like the cross-entropy method, natural evolution strategies14 optimize a proposal 14 I. Rechenberg, Evolutionsstrate-
gie Optimierung technischer Systeme
nach Prinzipien der biologischen Evo-
lution. Frommann-Holzboog, 1973.

distribution parameterized by θ. We have to specify the proposal distribution
family and the number of samples. The aim is tominimize Ex∼p(·|θ)[ f (x)]. Instead
of fitting elite samples, evolution strategies apply gradient descent. The gradient
is estimated from the samples:15 15 This gradient estimation has re-

cently been successfully applied
to proposal distributions repre-
sented by deep neural networks.
T. Salimans, J. Ho, X. Chen, and
I. Sutskever, ‘‘Evolution Strate-
gies as a Scalable Alternative to
Reinforcement Learning,’’ ArXiv,
no. 1703.03864, 2017.

∇θ Ex∼p(·|θ)[ f (x)] =
∫

∇θp(x | θ) f (x) dx (8.12)

=
∫

p(x | θ)
p(x | θ)∇θp(x | θ) f (x) dx (8.13)

=
∫

p(x | θ)∇θ log p(x | θ) f (x) dx (8.14)

= Ex∼p(·|θ)[ f (x)∇θ log p(x | θ)] (8.15)

≈ 1

m

m

∑
i=1

f (x(i))∇θ log p(x(i) | θ) (8.16)

Although we do not need the gradient of the objective function, we do need the
gradient of the log likelihood, log p(x | θ). Example 8.5 shows how to compute
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the gradient of the log likelihood for the multivariate normal distribution. The
estimated gradient can be used along with any of the descent methods discussed
in previous chapters to improve θ. Algorithm 8.8 uses gradient descent with a
fixed step size. Figure 8.7 shows a few iterations of the algorithm.

using Distributions
function natural_evolution_strategies(f, θ, k_max; m=100, α=0.01)

for k in 1 : k_max
samples = [rand(θ) for i in 1 : m]
θ -= α*sum(f(x)*∇logp(x, θ) for x in samples)/m

end
return θ

end

Algorithm 8.8. The natural evo-
lution strategies method, which
takes an objective function f to
be minimized, an initial distribu-
tion parameter vector θ, an itera-
tion count k_max, a sample size m,
and a step factor α. An optimized
parameter vector is returned. The
method rand(θ) should sample
from the distribution parameter-
ized by θ, and ∇logp(x, θ) should
return the log likelihood gradient.

8.6 Covariance Matrix Adaptation

Another popular method is covariance matrix adaptation,16 which is also referred to 16 It is common to use the phrase
evolution strategies to refer specifi-
cally to covariance matrix adapta-
tion.

as CMA-ES for covariance matrix adaptation evolutionary strategy. It has similarities
with natural evolution strategies from section 8.5, but the two should not be
confused. This method maintains a covariance matrix and is robust and sample
efficient. Like the cross-entropy method and natural evolution strategies, a distri-
bution is improved over time based on samples. Covariance matrix adaptation
uses multivariate Gaussian distributions.17 17 N. Hansen, ‘‘The CMA Evolu-

tion Strategy: A Tutorial,’’ ArXiv,
no. 1604.00772, 2016.Covariance matrix adaptation maintains a mean vector µ, a covariance matrix

Σ, and an additional step-size scalar σ. The covariance matrix only increases or
decreases in a single direction with every iteration, whereas the step-size scalar
is adapted to control the overall spread of the distribution. At every iteration, m

designs are sampled from the multivariate Gaussian:18 18 For optimization in Rn, it is rec-
ommended to use at least m =
4 + ⌊3 ln n⌋ samples per iteration,
and melite = ⌊m/2⌋ elite samples.

x ∼ N (µ, σ2
Σ) (8.17)

The designs are then sorted according to their objective function values such
that f (x(1)) ≤ f (x(2)) ≤ · · · ≤ f (x(m)). A newmean vector µ(k+1) is formed using
a weighted average of the sampled designs:

µ(k+1) ←
m

∑
i=1

wix
(i) (8.18)
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The multivariate normal distribution N (µ, Σ) with mean µ and covariance
Σ is a popular distribution family due to having analytic solutions. The
likelihood in d dimensions has the form

p(x | µ, Σ) = (2π)−
d
2 |Σ|− 1

2 exp

(

−1

2
(x− µ)⊤Σ

−1(x− µ)

)

where |Σ| is the determinant of Σ. The log likelihood is

log p(x | µ, Σ) = −d

2
log(2π)− 1

2
log |Σ| − 1

2
(x− µ)⊤Σ

−1(x− µ)

The parameters can be updated using their log likelihood gradients:

∇(µ) log p(x | µ, Σ) = Σ
−1(x− µ)

∇(Σ) log p(x | µ, Σ) =
1

2
Σ
−1(x− µ)(x− µ)⊤Σ

−1 − 1

2
Σ
−1

The term ∇(Σ) contains the partial derivative of each entry of Σ with respect
to the log likelihood.

Directly updating Σ may not result in a positive definite matrix, as is re-
quired for covariance matrices. One solution is to represent Σ as a product
A⊤A, which guarantees that Σ remains positive semidefinite, and then up-
date A instead. Replacing Σ by A⊤A and taking the gradient with respect to
A yields:

∇(A) log p(x | µ, A) = A
[

∇(Σ) log p(x | µ, Σ) +∇(Σ) log p(x | µ, Σ)⊤
]

Example 8.5. A derivation of the
log likelihood gradient equations
for the multivariate Gaussian dis-
tribution. For the original deriva-
tion and severalmore sophisticated
solutions for handling the positive
definite covariance matrix, see D.
Wierstra, T. Schaul, T. Glasmachers,
Y. Sun, and J. Schmidhuber, ‘‘Nat-
ural Evolution Strategies,’’ ArXiv,
no. 1106.4487, 2011.

x1

x
2

x1 x1 x1

Figure 8.7. Natural evolution strate-
gies using multivariate Gaussian
distributions applied to Wheeler’s
Ridge, appendix B.7.
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where the weights sum to 1, are ordered largest to smallest, and are all nonnega-
tive:19 19 The original paper (N. Hansen

and A. Ostermeier, ‘‘Adapting Ar-
bitrary Normal Mutation Distribu-
tions in Evolution Strategies: The
Covariance Matrix Adaptation,’’ in
IEEE International Conference on Evo-
lutionary Computation, 1996.) pro-
vides generalizations that need not
adhere to these constraints, but
their recommended implementa-
tion does adhere to them. Algo-
rithm 8.9 adheres to these con-
straints.

m

∑
i=1

wi = 1 w1 ≥ w2 ≥ · · · ≥ wm ≥ 0 (8.19)

Figure 8.8. Shown is an initial
proposal distribution (white con-
tours), six samples (white dots),
and the new updated means for
both covariance matrix adaptation
(blue dot) and the cross-entropy
method (red dot) using three elite
samples. Covariance matrix adap-
tation tends to update the mean
more aggressively than the cross-
entropy method (red dot), as it as-
signs higher weight to better sam-
pled designs.

We can recover the mean update in the cross-entropy method by setting the
first melite weights to 1/melite, and setting the remaining weights to zero. Covari-
ance matrix adaptation also assigns weight only to the first melite designs, but
distributes the weights unevenly. The recommended weighting is obtained by
normalizing

w′i = ln
m + 1

2
− ln i for i ∈ {1, . . . , m} (8.20)

to obtain w = w′/ ∑i w′i . Figure 8.8 compares the mean updates for covariance
matrix adaptation and the cross-entropy method.

The step size is updated using a cumulative variable pσ that tracks steps over
time:

p
(1)
σ = 0

p
(k+1)
σ ← (1− cσ)pσ +

√

cσ(2− cσ)µeff(Σ
(k))−1/2δw

(8.21)

where cσ < 1 controls the rate of decay and the right hand term determines
whether the step size should be increased or decreased based on the observed
samples with respect to the present scale of the distribution. The variance effective
selection mass µeff has the form

µeff =
1

∑i w2
i

(8.22)

and δw is computed from the sampled deviations:

δw =
melite
∑
i=1

wiδ
(i) for δ(i) =

x(i) − µ(k)

σ(k)
(8.23)

The new step size is obtained according to

σ(k+1) ← σ(k) exp

(
cσ

dσ

( ‖pσ‖
E‖N (0, I)‖ − 1

))

(8.24)

where

E‖N (0, I)‖ =
√

2
Γ
(

n+1
2

)

Γ
(

n
2

) ≈
√

n

(

1− 1

4n
+

1

21n2

)

(8.25)
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is the expected length of a vector drawn from a Gaussian distribution. Comparing
the length of pσ to its expected length under random selection provides the
mechanism by which σ is increased or decreased. The constants cσ and dσ have
recommended values:

cσ = (µeff + 2)/(n + µeff + 5)

dσ = 1 + 2 max

(

0,
√

(µeff − 1)/(n + 1)− 1

)

+ cσ

(8.26)

The covariance matrix is also updated using a cumulative vector:

p
(1)
Σ = 0

p
(k+1)
Σ ← (1− cΣ)p

(k)
Σ + hσ

√

cΣ(2− cΣ)µeffδw

(8.27)

where

hσ =







1 if ‖pΣ‖√

1−(1−cσ)2(k+1)
<
(
1.4 + 2

n+1

)
E‖N (0, I)‖

0 otherwise
(8.28)

The hσ stalls the update of pΣ if ‖pΣ‖ is too large, thereby preventing excessive
increases in Σ when the step size is too small.

The update requires the adjusted weights w◦:

w◦i =







wi if wi ≥ 0
nwi

∥
∥
∥Σ−1/2δ(i)

∥
∥
∥

2 otherwise (8.29)

The covariance update is then

Σ
(k+1) ←




1 + c1cc(1− hσ)(2− cc)− c1 − cµ

︸ ︷︷ ︸

typically zero




Σ

(k) + c1pΣp⊤Σ
︸ ︷︷ ︸

rank-one update

+ cµ

µ

∑
i=1

w◦i δ
(i)
(

δ(i)
)⊤

︸ ︷︷ ︸

rank-µ update

(8.30)

The constants cΣ, c1 and cµ have recommended values

cΣ =
4 + µeff/n

n + 4 + 2µeff/n

c1 =
2

(n + 1.3)2 + µeff

cµ = min

(

1− c1, 2
µeff − 2 + 1/µeff
(n + 2)2 + µeff

)

(8.31)
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The covariance update consists of three components: the previous covariance
matrix Σ

(k), a rank-one update, and a rank-µ update. The rank-one update gets
its name from the fact that pΣp⊤Σ has rank one; it has only one eigenvector along
pΣ. Rank-one updates using the cumulation vector allow for correlations between
consecutive steps to be exploited, permitting the covariance matrix to elongate
itself more quickly along a favorable axis.

The rank-µ update gets its name from the fact that ∑
µ
i=1 w◦i δ

(i)
(

δ(i)
)⊤

has rank
min(µ, n). One important difference between the empirical covariance matrix
update used by the cross-entropy method and the rank-µ update is that the
former estimates the covariance about the new mean µ(k+1), whereas the latter
estimates the covariance about the original mean µ(k). The δ(i) values thus help
estimate the variances of the sampled steps rather than the variance within the
sampled designs.

Covariance matrix adaptation is depicted in figure 8.9.

8.7 Summary

• Stochastic methods employ random numbers during the optimization process.

• Simulated annealing uses a temperature that controls random exploration and
which is reduced over time to converge on a local minimum.

• The cross-entropy method and evolution strategies maintain proposal distri-
butions from which they sample in order to inform updates.

• Natural evolution strategies uses gradient descent with respect to the log
likelihood to update its proposal distribution.

• Covariance matrix adaptation is a robust and sample-efficient optimizer that
maintains a multivariate Gaussian proposal distribution with a full covariance
matrix.

8.8 Exercises

Exercise 8.1. We have shown that mixture proposal distributions can better cap-
ture multiple minima. Why might their use in the cross-entropy method be
limited?
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function covariance_matrix_adaptation(f, x, k_max;
σ = 1.0,
m = 4 + floor(Int, 3*log(length(x))),
m_elite = div(m,2))

μ, n = copy(x), length(x)
ws = normalize!(vcat(log((m+1)/2) .- log.(1:m_elite),

zeros(m - m_elite)), 1)
μ_eff = 1 / sum(ws.^2)
cσ = (μ_eff + 2)/(n + μ_eff + 5)
dσ = 1 + 2max(0, sqrt((μ_eff-1)/(n+1))-1) + cσ
cΣ = (4 + μ_eff/n)/(n + 4 + 2μ_eff/n)
c1 = 2/((n+1.3)^2 + μ_eff)
cμ = min(1-c1, 2*(μ_eff-2+1/μ_eff)/((n+2)^2 + μ_eff))
E = n^0.5*(1-1/(4n)+1/(21*n^2))
pσ, pΣ, Σ = zeros(n), zeros(n), Matrix(1.0I, n, n)
for k in 1 : k_max

P = MvNormal(μ, σ^2*Σ)
xs = [rand(P) for i in 1 : m]
ys = [f(x) for x in xs]
is = sortperm(ys) # best to worst

# selection and mean update
δs = [(x - μ)/σ for x in xs]
δw = sum(ws[i]*δs[is[i]] for i in 1 : m_elite)
μ += σ*δw

# step-size control
C = Σ^-0.5
pσ = (1-cσ)*pσ + sqrt(cσ*(2-cσ)*μ_eff)*C*δw
σ *= exp(cσ/dσ * (norm(pσ)/E - 1))

# covariance adaptation
hσ = Int(norm(pσ)/sqrt(1-(1-cσ)^(2k)) < (1.4+2/(n+1))*E)
pΣ = (1-cΣ)*pΣ + hσ*sqrt(cΣ*(2-cΣ)*μ_eff)*δw
w0 = [ws[i]≥0 ? ws[i] : n*ws[i]/norm(C*δs[is[i]])^2

for i in 1:m]
Σ = (1-c1-cμ) * Σ +

c1*(pΣ*pΣ' + (1-hσ) * cΣ*(2-cΣ) * Σ) +
cμ*sum(w0[i]*δs[is[i]]*δs[is[i]]' for i in 1 : m)

Σ = triu(Σ)+triu(Σ,1)' # enforce symmetry
end
return μ

end

Algorithm 8.9. Covariance matrix
adaptation, which takes an objec-
tive function f to be minimized, an
initial design point x, and an itera-
tion count k_max. One can option-
ally specify the step-size scalar σ,
the sample size m, and the number
of elite samples m_elite.

The best candidate design point
is returned, which is the mean of
the final sample distribution.

The covariance matrix under-
goes an additional operation to en-
sure that it remains symmetric; oth-
erwise small numerical inconsis-
tencies can cause the matrix no
longer to be positive definite.
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Figure 8.9. Covariancematrix adap-
tation using multivariate Gaussian
distributions applied to the flower
function, appendix B.4.
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Exercise 8.2. In the cross-entropy method, what is a potential effect of using an
elite sample size that is very close to the total sample size?

Exercise 8.3. The log-likelihood of a value sampled from a Gaussian distribution
with mean µ and variance ν is:

ℓ(x | µ, ν) = −1

2
ln 2π − 1

2
ln ν− (x− µ)2

2ν

Show why evolution strategies using Gaussian distributions may encounter diffi-
culties while applying a descent update on the variance when the mean is on the
optimum, µ = x∗.

Exercise 8.4. Derive the maximum likelihood estimate for the cross-entropy
method using multivariate normal distributions:

µ(k+1) =
1

m

m

∑
i=1

x(i)

Σ
(k+1) =

1

m

m

∑
i=1

(x(i) − µ(k+1))(x(i) − µ(k+1))⊤

where the maximum likelihood estimates are the parameter values that maximize
the likelihood of sampling the individuals

{

x(1), · · · , x(m)
}

.





9 Population Methods

Previous chapters have focused on methods where a single design point is moved
incrementally toward a minimum. This chapter presents a variety of population
methods that involve optimization using a collection of design points, called indi-
viduals. Having a large number of individuals distributed throughout the design
space can help the algorithm avoid becoming stuck in a local minimum. Informa-
tion at different points in the design space can be shared between individuals to
globally optimize the objective function. Most population methods are stochastic
in nature, and it is generally easy to parallelize the computation.

9.1 Initialization

Population methods begin with an initial population, just as descent methods
require an initial design point. The initial population should be spread over the
design space to increase the chances that the samples are close to the best regions.
This section presents several initialization methods, but more advanced sampling
methods are discussed in detail in chapter 13.

We can often constrain the design variables to a region of interest consisting of
a hyperrectangle defined by lower and upper bounds a and b. Initial populations
can be sampled from a uniform distribution for each coordinate:1 1 Some population methods re-

quire additional information to
be associated with the individual,
such as velocity in the case of parti-
cle swarm optimization, discussed
later. Velocity is often initialized ac-
cording to a uniform or normal dis-
tribution.

x
(j)
i ∼ U(ai, bi) (9.1)

where x(j) is the jth individual in the population as seen in algorithm 9.1.
Another common approach is to use a multivariate normal distribution cen-

tered over a region of interest. The covariance matrix is typically diagonal, with
diagonal entries scaled to adequately cover the search space. Algorithm 9.2 pro-
vides an implementation.
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function rand_population_uniform(m, a, b)
d = length(a)
return [a+rand(d).*(b-a) for i in 1:m]

end

Algorithm 9.1. A method for sam-
pling an initial population of m de-
sign points over a uniform hyper-
rectangle with lower-bound vector
a and upper-bound vector b.

using Distributions
function rand_population_normal(m, μ, Σ)

D = MvNormal(μ,Σ)
return [rand(D) for i in 1:m]

end

Algorithm 9.2. A method for sam-
pling an initial population of m de-
sign points using a multivariate
normal distribution with mean μ
and covariance Σ.

Uniform and normal distributions limit the covered design space to a concen-
trated region. The Cauchy distribution (figure 9.1) has an unbounded variance
and can cover a much broader space. Algorithm 9.3 provides an implementation.
Figure 9.2, on the next page, compares example initial populations generated
using different methods.

−5 0 5

0

0.2

0.4

x

p
(x
)

Normal
Cauchy

Figure 9.1. A comparison of the
normal distribution with standard
deviation 1 and the Cauchy dis-
tribution with scale 1. Although
σ is sometimes used for the scale
parameter in the Cauchy distri-
bution, this should not be con-
fused with the standard deviation
since the standard deviation of the
Cauchy distribution is undefined.
The Cauchy distribution is heavy-
tailed, allowing it to cover the de-
sign space more broadly.

9.2 Genetic Algorithms

Genetic algorithms (algorithm 9.4) borrow inspiration from biological evolution,
where fitter individuals are more likely to pass on their genes to the next genera-
tion.2 An individual’s fitness for reproduction is inversely related to the value of 2 D. E. Goldberg,Genetic Algorithms

in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.the objective function at that point. The design point associatedwith an individual

is represented as a chromosome. At each generation, the chromosomes of the fitter
individuals are passed on to the next generation after undergoing the genetic
operations of crossover and mutation.
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using Distributions
function rand_population_cauchy(m, μ, σ)

n = length(μ)
return [[rand(Cauchy(μ[j],σ[j])) for j in 1:n] for i in 1:m]

end

Algorithm 9.3. A method for sam-
pling an initial population of m de-
sign points using a Cauchy distri-
bution with location μ and scale
σ for each dimension. The loca-
tion and scale are analogous to the
mean and standard deviation used
in a normal distribution.

−4 −2 0 2 4
−4

−2

0

2

4

x1

x
2

Uniform

−4 −2 0 2 4

x1

Normal

−4 −2 0 2 4

x1

Cauchy Figure 9.2. Initial populations of
size 1,000 sampled using a uniform
hyperrectangle with a = [−2,−2],
b = [2, 2], a zero-mean normal dis-
tribution with diagonal covariance
Σ = I, and Cauchy distributions
centered at the origin with scale
σ = 1.

function genetic_algorithm(f, population, k_max, S, C, M)
for k in 1 : k_max

parents = select(S, f.(population))
children = [crossover(C,population[p[1]],population[p[2]])

for p in parents]
population .= mutate.(Ref(M), children)

end
population[argmin(f.(population))]

end

Algorithm 9.4. The genetic
algorithm, which takes an
objective function f, an initial
population, number of iterations
k_max, a SelectionMethod S,
a CrossoverMethod C, and a
MutationMethod M.



150 chapter 9. population methods

9.2.1 Chromosomes
There are several ways to represent chromosomes. The simplest is the binary
string chromosome, a representation that is similar to the way DNA is encoded.3 A

3 Instead of a binary representation,
DNA contains four nucleobases:
adenine, thymine, cytosine, and
guanine, which are often abbrevi-
ated A, T, C, and G.

random binary string of length d can be generated using bitrand(d). A binary
string chromosome is depicted in figure 9.3.

Figure 9.3. A chromosome repre-
sented as a binary string.

Binary strings are often used due to the ease of expressing crossover and
mutation. Unfortunately, the process of decoding a binary string and producing a
design point is not always straightforward. Sometimes the binary string might not
represent a valid point in the design space. It is often more natural to represent a
chromosome using a list of real values. Such real-valued chromosomes are vectors
in Rd that directly correspond to points in the design space.

9.2.2 Initialization
Genetic algorithms start with a random initial population. Binary string chromo-
somes are typically initialized using random bit strings as seen in algorithm 9.5.
Real-valued chromosomes are typically initialized using the methods from the
previous section.

rand_population_binary(m, n) = [bitrand(n) for i in 1:m] Algorithm 9.5. A method for sam-
pling random starting populations
of m bit-string chromosomes of
length n.

9.2.3 Selection
Selection is the process of choosing chromosomes to use as parents for the next
generation. For a population with m chromosomes, a selection method will pro-
duce a list of m parental pairs4 for the m children of the next generation. The 4 In some cases, one might use

groups, should one wish to com-
binemore than two parents to form
a child.

selected pairs may contain duplicates.
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There are several approaches for biasing the selection toward the fittest (algo-
rithm 9.6). In truncation selection (figure 9.4), we choose parents from among the
best k chromosomes in the population. In tournament selection (figure 9.5), each
parent is the fittest out of k randomly chosen chromosomes of the population. In
roulette wheel selection (figure 9.6), also known as fitness proportionate selection, each
parent is chosen with a probability proportional to its performance relative to the
population. Since we are interested in minimizing an objective function f , the fit-
ness of the ith individual x(i) is inversely related to y(i) = f (x(i)). There are differ-
ent ways to transform a collection y(1), . . . , y(m) into fitnesses. A simple approach
is to assign the fitness of individual i according to max{y(1), . . . , y(m)} − y(i).

individual

y

individual

y
Figure 9.4. Truncation selection
with a population size m = 7 and
sample size k = 3. The height of a
bar indicates its objective function
value whereas its color indicates
what individual it corresponds to.

individual

y

individual

y

Figure 9.5. Tournament selection
with a population size m = 7
and a sample size k = 3, which
is run separately for each parent.
The height of a bar indicates its ob-
jective function value whereas its
color indicates what individual it
corresponds to.
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Figure 9.6. Roulette wheel selec-
tion with a population size m = 7,
which is run separately for each
parent. The approach used causes
the individual with theworst objec-
tive function value to have a zero
likelihood of being selected. The
height of a bar indicates its objec-
tive function value (left), or its like-
lihood (right), whereas its color
indicates what individual it corre-
sponds to.
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abstract type SelectionMethod end

struct TruncationSelection <: SelectionMethod
k # top k to keep

end
function select(t::TruncationSelection, y)

p = sortperm(y)
return [p[rand(1:t.k, 2)] for i in y]

end

struct TournamentSelection <: SelectionMethod
k

end
function select(t::TournamentSelection, y)

getparent() = begin
p = randperm(length(y))
p[argmin(y[p[1:t.k]])]

end
return [[getparent(), getparent()] for i in y]

end

struct RouletteWheelSelection <: SelectionMethod end
function select(::RouletteWheelSelection, y)

y = maximum(y) .- y
cat = Categorical(normalize(y, 1))
return [rand(cat, 2) for i in y]

end

Algorithm 9.6. Several selection
methods for genetic algo-
rithms. Calling selection with a
SelectionMethod and the list of
objective function values f will
produce a list of parental pairs.
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9.2.4 Crossover
Crossover combines the chromosomes of parents to form children. As with selec-
tion, there are several crossover schemes (algorithm 9.7).
• In single-point crossover (figure 9.7), the first portion of parent A’s chromosome

forms the first portion of the child chromosome, and the latter portion of parent
B’s chromosome forms the latter part of the child chromosome. The crossover
point where the transition occurs is determined uniformly at random.

parent A
parent B

child
crossover point

Figure 9.7. Single-point crossover.

• In two-point crossover (figure 9.8), we use two random crossover points.

parent A
parent B

child
crossover point 1 crossover point 2

Figure 9.8. Two-point crossover.

• In uniform crossover (figure 9.9), each bit has a fifty percent chance of coming
from either one of the two parents. This scheme is equivalent to each point
having a fifty percent chance of being a crossover point.

parent A
parent B

child

Figure 9.9. Uniform crossover.

The previous crossover methods also work for real-valued chromosomes. We
can, however, define an additional crossover routine that interpolates between
real values (algorithm 9.8). Here, the real values are linearly interpolated between
the parents’ values xa and xb:

x← (1− λ)xa + λxb (9.2)
where λ is a scalar parameter typically set to one-half.
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abstract type CrossoverMethod end
struct SinglePointCrossover <: CrossoverMethod end
function crossover(::SinglePointCrossover, a, b)

i = rand(1:length(a))
return vcat(a[1:i], b[i+1:end])

end

struct TwoPointCrossover <: CrossoverMethod end
function crossover(::TwoPointCrossover, a, b)

n = length(a)
i, j = rand(1:n, 2)
if i > j

(i,j) = (j,i)
end
return vcat(a[1:i], b[i+1:j], a[j+1:n])

end

struct UniformCrossover <: CrossoverMethod end
function crossover(::UniformCrossover, a, b)

child = copy(a)
for i in 1 : length(a)

if rand() < 0.5
child[i] = b[i]

end
end
return child

end

Algorithm 9.7. Several crossover
methods for genetic algo-
rithms. Calling crossover with
a CrossoverMethod and two
parents a and b will produce a
child chromosome that contains
a mixture of the parents’ genetic
codes. These methods work for
both binary string and real-valued
chromosomes.

struct InterpolationCrossover <: CrossoverMethod
λ

end
crossover(C::InterpolationCrossover, a, b) = (1-C.λ)*a + C.λ*b

Algorithm 9.8. A crossover
method for real-valued chromo-
somes which performs linear
interpolation between the parents.
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9.2.5 Mutation
If new chromosomeswere produced only through crossover, many traits that were
not present in the initial random population could never occur, and the most-fit
genes could saturate the population. Mutation allows new traits to spontaneously
appear, allowing the genetic algorithm to explore more of the state space. Child
chromosomes undergo mutation after crossover.

Each bit in a binary-valued chromosome typically has a small probability of
being flipped (figure 9.10). For a chromosome with m bits, this mutation rate is
typically set to 1/m, yielding an average of one mutation per child chromosome.
Mutation for real-valued chromosomes can be implemented using bitwise flips,
but it is more common to add zero-mean Gaussian noise. Algorithm 9.9 provides
implementations.

before mutation
after mutation

Figure 9.10. Mutation for binary
string chromosomes gives each bit
a small probability of flipping.

abstract type MutationMethod end
struct BitwiseMutation <: MutationMethod

λ
end
function mutate(M::BitwiseMutation, child)

return [rand() < M.λ ? !v : v for v in child]
end

struct GaussianMutation <: MutationMethod
σ

end
function mutate(M::GaussianMutation, child)

return child + randn(length(child))*M.σ
end

Algorithm 9.9. The bitwise muta-
tion method for binary string chro-
mosomes and the Gaussian muta-
tion method for real-valued chro-
mosomes. Here, λ is the mutation
rate, and σ is the standard devia-
tion.

Figure 9.11 illustrates several generations of a genetic algorithm. Example 9.1
shows how to combine selection, crossover, and mutation strategies discussed in
this section.
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x1

x
2

x1 x1 x1

Figure 9.11. A genetic algorithm
with truncation selection, single
point crossover, and Gaussian mu-
tation with σ = 0.1 applied to the
Michalewicz function defined in
appendix B.5.

We will demonstrate using genetic algorithms to optimize a simple function.

import Random: seed!
import LinearAlgebra: norm
seed!(0) # set random seed for reproducible results
f = x->norm(x)
m = 100 # population size
k_max = 10 # number of iterations
population = rand_population_uniform(m, [-3, 3], [3,3])
S = TruncationSelection(10) # select top 10
C = SinglePointCrossover()
M = GaussianMutation(0.5) # small mutation rate
x = genetic_algorithm(f, population, k_max, S, C, M)
@show x

x = [0.0367471, -0.090237]

Example 9.1. Demonstration of us-
ing a genetic algorithm for optimiz-
ing a simple function.
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9.3 Differential Evolution

Differential evolution (algorithm 9.10) attempts to improve each individual in the
population by recombining other individuals in the population according to a
simple formula.5 It is parameterized by a crossover probability p and a differential

5 S. Das and P.N. Suganthan, ‘‘Dif-
ferential Evolution: A Survey of the
State-of-the-Art,’’ IEEETransactions
on Evolutionary Computation, vol. 15,
no. 1, pp. 4–31, 2011.

weight w. Typically, w is between 0.4 and 1. For each individual x:

1. Choose three random distinct individuals a, b, and c.

2. Construct an interim design z = a + w · (b− c) as shown in figure 9.12.

3. Choose a random dimension j ∈ [1, . . . , n] for optimization in n dimensions.

4. Construct the candidate individual x′ using binary crossover.

x′i =







zi if i = j or with probability p

xi otherwise
(9.3)

5. Insert the better design between x and x′ into the next generation.

The algorithm is demonstrated in figure 9.13.

a

z b

c

b− c
w(b− c)

Figure 9.12. Differential evolution
takes three individuals a, b, and c

and combines them to form the can-
didate individual z.

using StatsBase
function differential_evolution(f, population, k_max; p=0.5, w=1)

n, m = length(population[1]), length(population)
for k in 1 : k_max

for (k,x) in enumerate(population)
a, b, c = sample(population,

Weights([j!=k for j in 1:m]), 3, replace=false)
z = a + w*(b-c)
j = rand(1:n)
x′ = [i == j || rand() < p ? z[i] : x[i] for i in 1:n]
if f(x′) < f(x)

x[:] = x′
end

end
end
return population[argmin(f.(population))]

end

Algorithm 9.10. Differential evolu-
tion, which takes an objective func-
tion f, a population population,
a number of iterations k_max, a
crossover probability p, and a dif-
ferential weight w. The best individ-
ual is returned.
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x
2

x1

x
2

x1 x1 x1

Figure 9.13. Differential evolution
with p = 0.5 and w = 0.2 applied
to Ackley’s function, defined in ap-
pendix B.1.

9.4 Particle Swarm Optimization

Particle swarm optimization introduces momentum to accelerate convergence to-
ward minima.6 Each individual, or particle, in the population keeps track of its 6 J. Kennedy, R.C. Eberhart, and

Y. Shi, Swarm Intelligence. Morgan
Kaufmann, 2001.current position, velocity, and the best position it has seen so far (algorithm 9.11).

Momentum allows an individual to accumulate speed in a favorable direction,
independent of local perturbations.

mutable struct Particle
x
v
x_best

end

Algorithm 9.11. Each particle in
particle swarm optimization has a
position x and velocity v in design
space and keeps track of the best
design point found so far, x_best.

At each iteration, each individual is accelerated toward both the best position it
has seen and the best position found thus far by any individual. The acceleration
is weighted by a random term, with separate random numbers being generated
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for each acceleration. The update equations are:
x(i) ← x(i) + v(i) (9.4)
v(i) ← wv(i) + c1r1

(

x
(i)
best − x(i)

)

+ c2r2

(

xbest − x(i)
)

(9.5)
where xbest is the best location found so far over all particles; w, c1, and c2 are pa-
rameters; and r1 and r2 are random numbers drawn from U(0, 1).7 Algorithm 9.12 7 A common strategy is to allow the

inertia w to decay over time.provides an implementation. Figure 9.14 shows several iterations of the algorithm.

function particle_swarm_optimization(f, population, k_max;
w=1, c1=1, c2=1)
n = length(population[1].x)
x_best, y_best = copy(population[1].x_best), Inf
for P in population

y = f(P.x)
if y < y_best; x_best[:], y_best = P.x, y; end

end
for k in 1 : k_max

for P in population
r1, r2 = rand(n), rand(n)
P.x += P.v
P.v = w*P.v + c1*r1.*(P.x_best - P.x) +

c2*r2.*(x_best - P.x)
y = f(P.x)
if y < y_best; x_best[:], y_best = P.x, y; end
if y < f(P.x_best); P.x_best[:] = P.x; end

end
end
return population

end

Algorithm 9.12. Particle swarm op-
timization, which takes an objec-
tive function f, a list of particles
population, a number of iterations
k_max, an inertia w, and momen-
tum coefficients c1 and c2. The de-
fault values are those used by R.
Eberhart and J. Kennedy, ‘‘A New
Optimizer Using Particle Swarm
Theory,’’ in International Symposium
on Micro Machine and Human Sci-
ence, 1995.

9.5 Firefly Algorithm

The firefly algorithm (algorithm 9.13) was inspired by the manner in which fireflies
flash their lights to attract mates.8 In the firefly algorithm, each individual in the

8 X.-S. Yang, Nature-Inspired Meta-
heuristic Algorithms. Luniver Press,
2008. Interestingly, male fireflies
flash to attract members of the
opposite sex, but females some-
times flash to attract males of other
species, which they then eat.population is a firefly and can flash to attract other fireflies. At each iteration, all

fireflies are moved toward all more attractive fireflies. A firefly a is moved toward
a firefly b with greater attraction according to

a← a + βI(‖b− a‖)(b− a) + αǫ (9.6)
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Figure 9.14. The particle swarm
method with w = 0.1, c1 = 0.25,
and c2 = 2 applied to Wheeler’s
Ridge, appendix B.7.

where I is the intensity of the attraction and β is the source intensity. A random
walk component is included as well, where ǫ is drawn from a zero-mean, unit
covariance multivariate Gaussian, and α scales the step size. The resulting update
is a random walk biased toward brighter fireflies.9 9 Yang recommends β = 1 and α ∈

[0, 1]. If β = 0, the behavior is a
random walk.The intensity I decreases as the distance r between the two fireflies increases

and is defined to be 1 when r = 0. One approach is to model the intensity as a
point source radiating into space, in which case the intensity decreases according
to the inverse square law

I(r) =
1

r2
(9.7)

Alternatively, if a source is suspended in amedium that absorbs light, the intensity
will decrease according to an exponential decay

I(r) = e−γr (9.8)

where γ is a the light absorption coefficient.10 10 The distance between fireflies
ceases to matter as γ approaches
zero.We generally want to avoid equation (9.8) in practice due to the singular-

ity at r = 0. A combination of the inverse square law and absorption can be
approximated with a Gaussian brightness drop-off:

I(r) = e−γr2 (9.9)
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A firefly’s attraction is proportional to its performance. Attraction affects only
whether one fly is attracted to another fly, whereas intensity affects how much
the less attractive fly moves. Figure 9.15 shows a few iterations of the algorithm.

using Distributions
function firefly(f, population, k_max;

β=1, α=0.1, brightness=r->exp(-r^2))

m = length(population[1])
N = MvNormal(Matrix(1.0I, m, m))
for k in 1 : k_max

for a in population, b in population
if f(b) < f(a)

r = norm(b-a)
a[:] += β*brightness(r)*(b-a) + α*rand(N)

end
end

end
return population[argmin([f(x) for x in population])]

end

Algorithm 9.13. The firefly algo-
rithm, which takes an objective
function f, a population flies con-
sisting of design points, a number
of iterations k_max, a source inten-
sity β, a random walk step size α,
and an intensity function I. The
best design point is returned.

Figure 9.15. Firefly search with
α = 0.5, β = 1, and γ = 0.1 ap-
plied to the Branin function (ap-
pendix B.3).9.6 Cuckoo Search

Cuckoo search (algorithm 9.14) is another nature-inspired algorithm named after
the cuckoo bird, which engages in a form of brood parasitism.11 Cuckoos lay their 11 X.-S. Yang and S. Deb, ‘‘Cuckoo

Search via Lévy Flights,’’ in World
Congress on Nature & Biologically In-
spired Computing (NaBIC), 2009.

eggs in the nests of other birds, often birds of other species. When this occurs,
the host bird may detect the invasive egg and then destroy it or establish a new
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nest somewhere else. However, there is also a chance that the egg is accepted and
raised by the host bird.12 12 Interestingly, an instinct of newly

hatched cuckoos is to knock other
eggs or hatchlings (those belong-
ing to the host bird) out of the nest.

In cuckoo search, each nest represents a design point. New design points can be
produced using Lévy flights from nests, which are randomwalks with step-lengths
from a heavy-tailed distribution. A new design point can replace a nest if it has a
better objective function value, which is analogous to cuckoo eggs replacing the
eggs of birds of other species.

The core rules are:

1. A cuckoo will lay an egg in a randomly chosen nest.

2. The best nests with the best eggs will survive to the next generation.

3. Cuckoo eggs have a chance of being discovered by the host bird, in which case
the eggs are destroyed.

Cuckoo search relies on random flights to establish new nest locations. These
flights start from an existing nest and then move randomly to a new location.
While wemight be tempted to use a uniform or Gaussian distribution for the walk,
these restrict the search to a relatively concentrated region. Instead, cuckoo search
uses a Cauchy distribution, which has a heavier tail. In addition, the Cauchy
distribution has been shown to be more representative of the movements of other
animals in the wild.13 Figure 9.16 shows a few iterations of cuckoo search.

13 For example, a certain species
of fruit fly explores its surround-
ings using Cauchy-like steps sepa-
rated by 90° turns. A.M. Reynolds
and M.A. Frye, ‘‘Free-Flight Odor
Tracking in Drosophila is Con-
sistent with an Optimal Intermit-
tent Scale-Free Search,’’ PLoS ONE,
vol. 2, no. 4, e354, 2007.Other nature-inspired algorithms include the artificial bee colony, the graywolf

optimizer, the bat algorithm, glowworm swarm optimization, intelligent water
drops, and harmony search.14 There has been some criticism of the proliferation 14 See, for example, D. Simon,Evolu-

tionary Optimization Algorithms. Wi-
ley, 2013.of methods that make analogies to nature without fundamentally contributing

novel methods and understanding.15 15 This viewpoint is expressed by
K. Sörensen, ‘‘Metaheuristics—the
Metaphor Exposed,’’ International
Transactions in Operational Research,
vol. 22, no. 1, pp. 3–18, 2015.

9.7 Hybrid Methods

Many population methods performwell in global search, being able to avoid local
minima and finding the best regions of the design space. Unfortunately, these
methods do not perform as well in local search in comparison to descent methods.
Several hybrid methods16 have been developed to extend population methods with

16 In the literature, these kinds of
techniques are also referred to as
memetic algorithms or genetic local
search.

descent-based features to improve their performance in local search. There are
two general approaches to combining population methods with local search
techniques:17

17 K.W.C. Ku and M.-W. Mak, ‘‘Ex-
ploring the Effects of Lamarckian
and Baldwinian Learning in Evolv-
ing Recurrent Neural Networks,’’
in IEEE Congress on Evolutionary
Computation (CEC), 1997.
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using Distributions
mutable struct Nest

x # position
y # value, f(x)

end
function cuckoo_search(f, population, k_max;

p_a=0.1, C=Cauchy(0,1))
m, n = length(population), length(population[1].x)
a = round(Int, m*p_a)
for k in 1 : k_max

i, j = rand(1:m), rand(1:m)
x = population[j].x + [rand(C) for k in 1 : n]
y = f(x)
if y < population[i].y

population[i].x[:] = x
population[i].y = y

end

p = sortperm(population, by=nest->nest.y, rev=true)
for i in 1 : a

j = rand(1:m-a)+a
population[p[i]] = Nest(population[p[j]].x +

[rand(C) for k in 1 : n],
f(population[p[i]].x)
)

end
end
return population

end

Algorithm 9.14. Cuckoo search,
which takes an objective function
f, an initial set of nests population,
a number of iterations k_max, per-
cent of nests to abandon p_a, and
flight distribution C. The flight dis-
tribution is typically a centered
Cauchy distribution.

Figure 9.16. Cuckoo search ap-
plied to the Branin function (ap-
pendix B.3).
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• In Lamarckian learning, the population method is extended with a local search
method that locally improves each individual. The original individual and its
objective function value are replaced by the individual’s optimized counterpart
and its objective function value.

• In Baldwinian learning, the same local search method is applied to each individ-
ual, but the results are used only to update the individual’s perceived objective
function value. Individuals are not replaced but are merely associated with
optimized objective function values, which are not the same as their actual
objective function value. Baldwinian learning can help prevent premature
convergence.

The difference between these approaches is illustrated in example 9.2.

Consider optimizing f (x) = −e−x2 − 2e−(x−3)2 using a population of indi-
viduals initialized near x = 0.

−2 0 2 4

−2

−1

0

x

y

Lamarckian

−2 0 2 4

−2

−1

0

x

Baldwinian

A Lamarckian local search update applied to this population would move
the individuals toward the local minimum, reducing the chance that future
individuals escape and find the global optimum near x = 3. A Baldwinian
approach will compute the same update but leaves the original designs
unchanged. The selection step will value each design according to its value
from a local search.

Example 9.2. A comparison of the
Lamarckian and Baldwinian hy-
brid methods.
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9.8 Summary

• Population methods use a collection of individuals in the design space to guide
progression toward an optimum.

• Genetic algorithms leverage selection, crossover, and mutations to produce
better subsequent generations.

• Differential evolution, particle swarm optimization, the firefly algorithm, and
cuckoo search include rules and mechanisms for attracting design points to
the best individuals in the population while maintaining suitable state space
exploration.

• Population methods can be extended with local search approaches to improve
convergence.

9.9 Exercises

Exercise 9.1. What is the motivation behind the selection operation in genetic
algorithms?

Exercise 9.2. Why does mutation play such a fundamental role in genetic algo-
rithms? How would we choose the mutation rate if we suspect there is a better
optimal solution?

Exercise 9.3. If we observe that particle swarm optimization results in fast con-
vergence to a nonglobal minimum, how might we change the parameters of the
algorithm?





10 Constraints

Previous chapters have focused on unconstrained problems where the domain of
each design variable is the space of real numbers. Many problems are constrained,
which forces design points to satisfy certain conditions. This chapter presents a
variety of approaches for transforming problems with constraints into problems
without constraints, thereby permitting the use of the optimization algorithms
we have already discussed. Analytical methods are also discussed, including the
concepts of duality and the necessary conditions for optimality under constrained
optimization.

10.1 Constrained Optimization

Recall the core optimization problem equation (1.1):

minimize
x

f (x)

subject to x ∈ X
(10.1)

In unconstrained problems, the feasible set X is Rn. In constrained problems, the
feasible set is some subset thereof.

Some constraints are simply upper or lower bounds on the design variables,
as we have seen in bracketed line search, in which x must lie between a and b.
A bracketing constraint x ∈ [a, b] can be replaced by two inequality constraints:
a ≤ x and x ≤ b as shown in figure 10.1. In multivariate problems, bracketing the
input variables forces them to lie within a hyperrectangle as shown in figure 10.2.
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a b

x

f (x)

minimize
x

f (x)

subject to x ∈ [a, b]

Figure 10.1. A simple optimization
problem constrained by upper and
lower bounds.

x1

x
2

Figure 10.2. Bracketing constraints
force the solution to lie within a
hyperrectangle.

Constraints arise naturally when formulating real problems. A hedge fund
manager cannot sell more stock than they have, an airplane cannot have wings
with zero thickness, and the number of hours you spend per week on your
homework cannot exceed 168. We include constraints in such problems to prevent
the optimization algorithm from suggesting an infeasible solution.

Applying constraints to a problem can affect the solution, but this need not be
the case as shown in figure 10.3.

x∗
x

f (x)

Unconstrained

a b

x∗
x

Constrained, Same Solution

a b

x∗

x

Constrained, New Solution

Figure 10.3. Constraints can change
the solution to a problem, but do
not have to.

10.2 Constraint Types

Constraints are not typically specified directly through a known feasible set X .
Instead, the feasible set is typically formed from two types of constraints:1 1 We have g representing a less-

than inequality constraint. Greater-
than equality constraints can be
translated into less-than inequality
constraints by introducing a nega-
tive sign.

1. equality constraints, h(x) = 0

2. inequality constraints, g(x) ≤ 0
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Any optimization problem can be rewritten using these constraints:

minimize
x

f (x)

subject to hi(x) = 0 for all i in {1, . . . , ℓ}
gj(x) ≤ 0 for all j in {1, . . . , m}

(10.2)

Of course, constraints can be constructed from a feasible set X :

h(x) = (x /∈ X ) (10.3)

where Boolean expressions evaluate to 0 or 1.
We often use equality and inequality functions (h(x) = 0, g(x) ≤ 0) to define

constraints rather than setmembership (x ∈ X ) because the functions can provide
information about how far a given point is from being feasible. This information
helps drive solution methods toward feasibility.

Equality constraints are sometimes decomposed into two inequality constraints:

h(x) = 0 ⇐⇒







h(x) ≤ 0

h(x) ≥ 0
(10.4)

However, sometimes we want to handle equality constraints separately, as we
will discuss later in this chapter.

10.3 Transformations to Remove Constraints

In some cases, it may be possible to transform a problem so that constraints can be
removed. For example, bound constraints a ≤ x ≤ b can be removed by passing
x through a transform (figure 10.4):

x = ta,b(x̂) =
b + a

2
+

b− a

2

(
2x̂

1 + x̂2

)

(10.5)

Example 10.1 demonstrates this process.

−1 1
a

b

x̂

x

Figure 10.4. This transform ensures
that x lies between a and b.

Some equality constraints can be used to solve for xn given x1, . . . , xn−1. In
other words, if we know the first n− 1 components of x, we can use the constraint
equation to obtain xn. In such cases, the optimization problem can be reformu-
lated over x1, . . . , xn−1 instead, removing the constraint and removing one design
variable. Example 10.2 demonstrates this process.
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Consider the optimization problem

minimize
x

x sin(x)

subject to 2 ≤ x ≤ 6

We can transform the problem to remove the constraints:

minimize
x̂

t2,6(x̂) sin(t2,6(x̂))

minimize
x̂

(

4 + 2

(
2x̂

1 + x̂2

))

sin

(

4 + 2

(
2x̂

1 + x̂2

))

We can use the optimization method of our choice to solve the uncon-
strained problem. In doing so, we find two minima: x̂ ≈ 0.242 and x̂ ≈ 4.139,
both of which have a function value of approximately −4.814.

0 5 10 15

−10

0

10

x

f (x) = x sin(x)

−5 0 5

−4

−2

0

2

x̂

( f ◦ T2,6)(x̂)

The solution for the original problem is obtained by passing x̂ through
the transform. Both values of x̂ produce x = t2,6(x̂) ≈ 4.914.

Example 10.1. Removing bounds
constraints using a transform on
the input variable.
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Consider the constraint:

h(x) = x2
1 + x2

2 + · · ·+ x2
n − 1 = 0

We can solve for xn using the first n− 1 variables:

xn = ±
√

1− x2
1 + x2

2 + · · ·+ x2
n−1

We can transform
minimize

x
f (x)

subject to h(x) = 0

into

minimize
x1,...,xn−1

f

([

x1, . . . , xn−1,±
√

1− x2
1 + x2

2 + · · ·+ x2
n−1

])

Example 10.2. Using constraint
equations to eliminate design vari-
ables.

10.4 Lagrange Multipliers

Themethod of Lagrangemultipliers is used to optimize a function subject to equality
constraints. Consider an optimization problem with a single equality constraint:

minimize
x

f (x)

subject to h(x) = 0
(10.6)

where f and h have continuous partial derivatives. Example 10.3 discusses such a
problem.

The method of Lagrange multipliers is used to compute where a contour line
of f is aligned with the contour line of h(x) = 0. Since the gradient of a function
at a point is perpendicular to the contour line of that function through that point,
we know the gradient of h will be perpendicular to the contour line h(x) = 0.
Hence, we need to find where the gradient of f and the gradient of h are aligned.

We seek the best x such that the constraint

h(x) = 0 (10.7)
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Consider the minimization problem:

minimize
x

− exp

(

−
(

x1x2 −
3

2

)2

− (x2 −
3

2
)2

)

subject to x1 − x2
2 = 0

We substitute the constraint x1 = x2
2 into the objective function to obtain

an unconstrained objective:

func = − exp

(

−
(

x3
2 −

3

2

)2

−
(

x2 −
3

2

)2
)

whose derivative is:

∂

∂x2
func = 6 exp

(

−
(

x3
2 −

3

2

)2

−
(

x2 −
3

2

)2
)(

x5
2 −

3

2
x2

2 +
1

3
x2 −

1

2

)

Setting the derivative to zero and solving for x2 yields x2 ≈ 1.165. The
solution to the original optimization problem is thus x∗ ≈ [1.358, 1.165]. The
optimum lies where the contour line of f is aligned with h.

If the point x∗ optimizes f along h, then its directional derivative at x∗

along h must be zero. That is, small shifts of x∗ along h cannot result in an
improvement.

The contour lines of f are lines of constant f . Thus, if a contour line of f

is tangent to h, then the directional derivative of h at that point, along the
direction of the contour h(x) = 0, must be zero.

Example 10.3. A motivating exam-
ple of the method of Lagrangemul-
tipliers.

h(x) = 0

x∗

x1

x
2
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is satisfied and the gradients are aligned

∇ f (x) = λ∇h(x) (10.8)

for some Lagrange multiplier λ. We need the scalar λ because the magnitudes of
the gradients may not be the same.2 2 When ∇ f is zero, the Lagrange

multiplier λ equals zero, irrespec-
tive of ∇h.We can formulate the Lagrangian, which is a function of the design variables

and the multiplier
L(x, λ) = f (x)− λh(x) (10.9)

Solving∇L(x, λ) = 0 solves equations (10.7) and (10.8). Specifically,∇xL = 0

gives us the condition ∇ f = λ∇h, and ∇λL = 0 gives us h(x) = 0. Any solution
is considered a critical point. Critical points can be local minima, global minima,
or saddle points.3 Example 10.4 demonstrates this approach.

3 The method of Lagrange multipli-
ers gives us a first-order necessary
condition to test for optimality. We
will extend this method to include
inequalities.

We can use the method of Lagrange multipliers to solve the problem in
example 10.3. We form the Lagrangian

L(x1, x2, λ) = − exp

(

−
(

x1x2 −
3

2

)2

−
(

x2 −
3

2

)2
)

− λ(x1 − x2
2)

and compute the gradient

∂L
∂x1

= 2x2 f (x)

(
3

2
− x1x2

)

− λ

∂L
∂x2

= 2λx2 + f (x)

(

−2x1(x1x2 −
3

2
)− 2(x2 −

3

2
)

)

∂L
∂λ

= x2
2 − x1

Setting these derivatives to zero and solving yields x1 ≈ 1.358, x2 ≈ 1.165,
and λ ≈ 0.170.

Example 10.4. Using the method of
Lagrange multipliers to solve the
problem in example 10.3.

The method of Lagrange multipliers can be extended to multiple equality
constraints. Consider a problem with two equality constraints:

minimize
x

f (x)

subject to h1(x) = 0

h2(x) = 0

(10.10)
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We can collapse these constraints into a single constraint. The new constraint
is satisfied by exactly the same points as before, so the solution is unchanged.

minimize
x

f (x)

subject to hcomb(x) = h1(x)
2 + h2(x)

2 = 0
(10.11)

We can now apply the method of Lagrange multipliers as we did before. In
particular, we compute the gradient condition

∇ f − λ∇hcomb = 0 (10.12)
∇ f − 2λ(h1∇h1 + h2∇h2) = 0 (10.13)

Our choice for hcomb was somewhat arbitrary. We could have used

hcomb(x) = h1(x)
2 + c · h2(x)

2 (10.14)

for some constant c > 0.
With this more general formulation, we get

0 = ∇ f − λ∇hcomb (10.15)
= ∇ f − 2λh1∇h1 + 2cλh2∇h2 (10.16)
= ∇ f − λ1∇h1 + λ2∇h2 (10.17)

We can thus define a Lagrangian with ℓ Lagrange multipliers for problems
with ℓ equality constraints

L(x,λ) = f (x)−
ℓ

∑
i=1

λihi(x) = f (x)− λ⊤h(x) (10.18)

10.5 Inequality Constraints

Consider a problem with a single inequality constraint:

minimize
x

f (x)

subject to g(x) ≤ 0
(10.19)

We know that if the solution lies at the constraint boundary, then the Lagrange
condition holds

∇ f − µ∇g = 0 (10.20)
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for some constant µ. When this occurs, the constraint is considered active, and
the gradient of the objective function is limited exactly as it was with equality
constraints. Figure 10.5 shows an example.

x∗

Figure 10.5. An active inequality
constraint. The corresponding con-
tour line is shown in red.

If the solution to the problem does not lie at the constraint boundary, then the
constraint is considered inactive. Solutions of f will simply lie where the gradient
of f is zero, as with unconstrained optimization. In this case, equation (10.20)
will hold by setting µ to zero. Figure 10.6 shows an example.

x∗

Figure 10.6. An inactive inequality
constraint.

We could optimize a problem with an inequality constraint by introducing an
infinite step penalty for infeasible points:

f∞-step(x) =







f (x) if g(x) ≤ 0

∞ otherwise
(10.21)

= f (x) + ∞ · (g(x) > 0) (10.22)

Unfortunately, f∞-step is inconvenient to optimize.4 It is discontinuous and

4 Such a problem formulation can
be optimized using direct methods
such as the mesh adaptive direct
search (section 8.2).

nondifferentiable. Search routines obtain no directional information to steer them-
selves toward feasibility.

We can instead use a linear penalty µg(x), which forms a lower bound on
∞ · (g(x) > 0) and penalizes the objective toward feasibility as long as µ > 0.
This linear penalty is visualized in figure 10.7.

−1 0 1

−1

0

1

g(x)

∞ · (g(x) > 0)

µg(x)

Figure 10.7. The linear function
µg(x) is a lower bound to the infi-
nite step penalty so long as µ ≥ 0.

We can use this linear penalty to construct a Lagrangian for inequality con-
straints

L(x, µ) = f (x) + µg(x) (10.23)
We can recover f∞-step by maximizing with respect to µ

f∞-step = maximize
µ≥0

L(x, µ) (10.24)

For any infeasible x we get infinity and for any feasible x we get f (x).
The new optimization problem is thus

minimize
x

maximize
µ≥0

L(x, µ) (10.25)

This reformulation is known as the primal problem.
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Optimizing the primal problem requires finding critical points x∗ such that:

1. g(x∗) ≤ 0

The point is feasible.

2. µ ≥ 0

The penalty must point in the right direction. This requirement is sometimes
called dual feasibility.

3. µg(x∗) = 0

A feasible point on the boundary will have g(x) = 0, whereas a feasible point
with g(x) < 0 will have µ = 0 to recover f (x∗) from the Lagrangian.

4. ∇ f (x∗)− µ∇g(x∗) = 0

When the constraint is active, we require that the contour lines of f and g be
aligned, which is equivalent to saying that their gradients be aligned. When
the constraint is inactive, our optimum will have ∇ f (x∗) = 0 and µ = 0.

These four requirements can be generalized to optimization problems with
any number of equality and inequality constraints:5 5 If u and v are vectors of the same

length, then we say u ≤ v when
ui ≤ vi for all i. We define ≥, <,
and > similarly for vectors.

minimize
x

f (x)

subject to g(x) ≤ 0

h(x) = 0

(10.26)

where each component of g is an inequality constraint and each component of h

is an equality constraint. The four conditions are called the KKT conditions.6 6 Named after Harold W. Kuhn
and Albert W. Tucker who pub-
lished the conditions in 1951. It
was later discovered that William
Karush studied these conditions
in an unpublished master’s thesis
in 1939. A historical prospective is
provided byT.H.Kjeldsen, ‘‘ACon-
textualized Historical Analysis of
the Kuhn-Tucker Theorem in Non-
linear Programming: The Impact
of World War II,’’ Historia Mathe-
matica, vol. 27, no. 4, pp. 331–361,
2000.

1. Feasibility: The constraints are all satisfied.

g(x∗) ≤ 0 (10.27)
h(x∗) = 0 (10.28)

2. Dual feasibility: Penalization is toward feasibility.

µ ≥ 0 (10.29)

3. Complementary slackness: The Lagrange multipliers takes up the slack. Ei-
ther µi is zero or gi(x

∗) is zero.7 7 The operation a⊙ b indicates the
element-wise product between vec-
tors a and b.µ⊙ g = 0 (10.30)
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4. Stationarity: The objective function contour is tangent to each active constraint.

∇ f (x∗)−∑
i

µi∇gi(x
∗)−∑

j

λj∇hj(x
∗) = 0 (10.31)

These four conditions are first-order necessary conditions for optimality and
are thus FONCs for problems with smooth constraints. Just as with the FONCs for
unconstrained optimization, special care must be taken to ensure that identified
critical points are actually local minima.

10.6 Duality

In deriving the FONCs for constrained optimization, we also find a more general
form for the Lagrangian. This generalized Lagrangian is8 8 Since the sign of λ is not re-

stricted, we can reverse the sign for
the equality constraints from the
method of Lagrange multipliers.

L(x,µ,λ) = f (x) + ∑
i

µigi(x) + ∑
j

λjhj(x) (10.32)

The primal form of the optimization problem is the original optimization prob-
lem formulated using the generalized Lagrangian

minimize
x

maximize
µ≥0,λ

L(x,µ,λ) (10.33)

The primal problem is identical to the original problem and is just as difficult
to optimize.

The dual form of the optimization problem reverses the order of the minimiza-
tion and maximization in equation (10.33):

maximize
µ≥0,λ

minimize
x

L(x,µ,λ) (10.34)

The max-min inequality states that for any function f (a, b):

maximize
a

minimize
b

f (a, b) ≤ minimize
b

maximize
a

f (a, b) (10.35)

The solution to the dual problem is thus a lower bound to the solution of the
primal problem. That is, d∗ ≤ p∗, where d∗ is the dual value and p∗ is the primal
value.

The inner maximization in the dual problem is often folded into a dual function,

D(µ ≥ 0,λ) = minimize
x

L(x,µ,λ) (10.36)
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for notational convenience. The dual function is concave.9 Gradient ascent on a 9 For a detailed overview, see S.
Nash and A. Sofer, Linear and Non-
linear Programming. McGraw-Hill,
1996.

concave function always converges to the global maximum. Optimizing the dual
problem is easy whenever minimizing the Lagrangian with respect to x is easy.

We know that maximizeµ≥0,λD(µ,λ) ≤ p∗. It follows that the dual function
is always a lower bound on the primal problem (see example 10.5). For any µ ≥ 0

and any λ, we have
D(µ ≥ 0,λ) ≤ p∗ (10.37)

The difference p∗ − d∗ between the dual and primal values is called the duality
gap. In some cases, the dual problem is guaranteed to have the same solution as
the original problem—the duality gap is zero.10 In such cases, duality provides 10 Conditions that guarantee a zero

duality gap are discussed in S.
Boyd and L. Vandenberghe, Con-
vex Optimization. Cambridge Uni-
versity Press, 2004.

an alternative approach for optimizing our problem. Example 10.6 demonstrates
this approach.

10.7 Penalty Methods

We can use penalty methods to convert constrained optimization problems into
unconstrained optimization problems by adding penalty terms to the objective
function, allowing us to use the methods developed in previous chapters.

Consider a general optimization problem:

minimize
x

f (x)

subject to g(x) ≤ 0

h(x) = 0

(10.38)

A simple penalty method counts the number of constraint equations that are
violated:

pcount(x) = ∑
i

(gi(x) > 0) + ∑
j

(
hj(x) 6= 0

) (10.39)

which results in the unconstrained optimization problem that penalizes infeasi-
bility

minimize
x

f (x) + ρ · pcount(x) (10.40)

where ρ > 0 adjusts the penalty magnitude. Figure 10.8 shows an example.
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Consider the optimization problem:

minimize
x

sin(x)

subject to x2 ≤ 3

The generalized Lagrangian is L(x, µ) = sin(x) + µ(x2 − 3), making the
primal problem:

minimize
x

maximize
µ≥0

sin(x) + µ(x2 − 3)

and the dual problem:

maximize
µ≥0

minimize
x

sin(x) + µ(x2 − 3)

x∗

−4 −2 0 2 4

0

5

10

15

x

y

µ = 0.1

µ = 0.2

µ = 0.3

µ = 0.4

µ = 0.5

µ = 0.6

µ = 0.7

µ = 0.8

µ = 0.9

µ = 1.0

The objective function is plotted in black, with the feasible region traced
over in blue. The minimum is at x∗ = −1.5 with p∗ ≈ −0.997. The purple
lines are the Lagrangian L(x, µ) for µ = 0.1, 0.2, . . . , 1, each of which has a
minimum lower than p∗.

Example 10.5. The dual function is
a lower bound of the primal prob-
lem.
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Consider the problem:

minimize
x

x1 + x2 + x1x2

subject to x2
1 + x2

2 = 1

The Lagrangian is L(x1, x2, λ) = x1 + x2 + x1x2 + λ(x2
1 + x2

2 − 1).
We apply the method of Lagrange multipliers:

∂L
∂x1

= 1 + x2 + 2λx1 = 0

∂L
∂x2

= 1 + x1 + 2λx2 = 0

∂L
∂λ

= x2
1 + x2

2 − 1 = 0

Solving yields four potential solutions, and thus four critical points:

x1 x2 λ

−1 0 1/2

0 −1 1/2√
2+1√
2+2

√
2+1√
2+2

1
2

(

−1−
√

2
)

√
2−1√
2−2

√
2−1√
2−2

1
2

(

−1 +
√

2
)

The dual function has the form

D(λ) = minimize
x1,x2

x1 + x2 + x1x2 + λ(x2
1 + x2

2 − 1)

We can substitute in x1 = x2 = x and set the derivative with respect to x

to zero to obtain x = −1− λ. Making the substitution yields

D(λ) = −1− 3λ− λ2

The dual problem maximizeλD(λ) is maximized at λ =
(

−1−
√

2
)

/2.

Example 10.6. An example of La-
grangian duality applied to a prob-
lem with an equality constraint.
The top figure shows the objective
function contour and the constraint
with the four critical pointsmarked
by scatter points. The bottom fig-
ure shows the dual function.
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a b

x

f (x)

f (x) + ρpcount(x)

Figure 10.8. The original and count-
penalized objective functions for
minimizing f subject to x ∈ [a, b].

Penalty methods start with an initial point x and a small value for ρ. The
unconstrained optimization problem equation (10.40) is then solved. The resulting
design point is then used as the starting point for another optimization with an
increased penalty. We continue with this procedure until the resulting point is
feasible, or a maximum number of iterations has been reached. Algorithm 10.1
provides an implementation.

function penalty_method(f, p, x, k_max; ρ=1, γ=2)
for k in 1 : k_max

x = minimize(x -> f(x) + ρ*p(x), x)
ρ *= γ
if p(x) == 0

return x
end

end
return x

end

Algorithm 10.1. The penalty
method for objective function f,
penalty function p, initial point
x, number of iterations k_max,
initial penalty ρ > 0, and penalty
multiplier γ > 1. The method
minimize should be replaced
with a suitable unconstrained
minimization method.

This penalty will preserve the problem solution for large values of ρ, but it
introduces a sharp discontinuity. Points not inside the feasible set lack gradient
information to guide the search towards feasibility.

We can use quadratic penalties to produce a smooth objective function (fig-
ure 10.9):

pquadratic(x) = ∑
i

max(gi(x), 0)2 + ∑
j

hj(x)
2 (10.41)

Quadratic penalties close to the constraint boundary are very small and may
require ρ to approach infinity before the solution ceases to violate the constraints.

a b

x

f (x)

f (x) + ρpquadratic(x)

Figure 10.9. Using a quadratic
penalty function for minimizing f
subject to x ∈ [a, b].

It is also possible to mix a count and a quadratic penalty function (figure 10.10):

pmixed(x) = ρ1 pcount(x) + ρ2 pquadratic(x) (10.42)
Such a penalty mixture provides a clear boundary between the feasible region
and the infeasible region while providing gradient information to the solver. a b

x

f (x)

f (x) + pmixed(x)

Figure 10.10. Using both a
quadratic and discrete penalty
function for minimizing f subject
to x ∈ [a, b].

Figure 10.11 shows the progress of the penalty function as ρ is increased.
Quadratic penalty functions cannot ensure feasibility as discussed in example 10.7.
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x

−2 0 2

−2

0

2

x1

x
2

ρ = 0

x

−2 0 2

x1

ρ = 1

x

−2 0 2

x1

ρ = 2

x

−2 0 2

x1

ρ = 3

Figure 10.11. The penalty method
applied to the flower function, ap-
pendix B.4, and the circular con-
straint

x2
1 + x2

2 ≥ 2

Consider the problem
minimize

x
x

subject to x ≥ 5

using a quadratic penalty function.
The unconstrained objective function is

f (x) = x + ρ max(5− x, 0)2

The minimum of the unconstrained objective function is

x∗ = 5− 1

2ρ

While theminimumof the constrained optimization problem is clearly x =

5, the minimum of the penalized optimization problem merely approaches
x = 5, requiring an infinite penalty to achieve feasibility.

Example 10.7. An example show-
ing how quadratic penalties cannot
ensure feasibility.
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10.8 Augmented Lagrange Method

The augmented Lagrange method11 is an adaptation of the penalty method specifi- 11 Not to be confused with the
method of Lagrange multipliers.cally for equality constraints. Unlike the penaltymethod, where ρ must sometimes

approach infinity before a feasible solution is found, the augmented Lagrange
method will work with smaller values of ρ. It uses both a quadratic and a linear
penalty for each constraint.

For an optimization problem with equality constraints h(x) = 0, the penalty
function is:

pLagrange(x) =
1

2
ρ ∑

i

(hi(x))
2 −∑

i

λihi(x) (10.43)

where λ converges toward the Lagrange multiplier.
In addition to increasing ρ with each iteration, the linear penalty vector is

updated according to:
λ(k+1) = λ(k) − ρh(x) (10.44)

Algorithm 10.2 provides an implementation.

function augmented_lagrange_method(f, h, x, k_max; ρ=1, γ=2)
λ = zeros(length(h(x)))
for k in 1 : k_max

p = x -> f(x) + ρ/2*sum(h(x).^2) - λ⋅h(x)
x = minimize(x -> f(x) + p(x), x)
ρ *= γ
λ -= ρ*h(x)

end
return x

end

Algorithm 10.2. The augmented La-
grange method for objective func-
tion f, equality constraint func-
tion h, initial point x, number
of iterations k_max, initial penalty
scalar ρ > 0, and penalty multi-
plier γ > 1. The function minimize
should be replaced with the mini-
mization method of your choice.

10.9 Interior Point Methods

Interior point methods (algorithm 10.3), sometimes referred to as barrier methods, are
optimization methods that ensure that the search points always remain feasible.12 12 Interior point methods that are

stopped early produce nearly opti-
mal, though feasible, design points.
Methodsmay be stopped early due
to time or processing constraints.

Interior point methods use a barrier function that approaches infinity as one
approaches a constraint boundary. This barrier function, pbarrier(x), must satisfy
several properties:

1. pbarrier(x) is continuous
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2. pbarrier(x) is nonnegative (pbarrier(x) ≥ 0)

3. pbarrier(x) approaches infinity as x approaches any constraint boundary

Some examples of barrier functions are:
Inverse Barrier:

pbarrier(x) = −∑
i

1

gi(x)
(10.45)

Log Barrier:

pbarrier(x) = −∑
i







log(−gi(x)) if gi(x) ≥ −1

0 otherwise
(10.46)

A problem with inequality constraints can be transformed into an uncon-
strained optimization problem

minimize
x

f (x) +
1

ρ
pbarrier(x) (10.47)

When ρ is increased, the penalty for approaching the boundary decreases (fig-
ure 10.12).

a b

x

f (x)

f (x) + pbarrier(x)

f (x) + 1
2 pbarrier(x)

f (x) + 1
10 pbarrier(x)

Figure 10.12. Applying the interior
point method with an inverse bar-
rier for minimizing f subject to
x ∈ [a, b].

Special care must be taken such that line searches do not leave the feasible
region. Line searches f (x + αd) are constrained to the interval α = [0, αu], where
αu is the step to the nearest boundary. In practice, αu is chosen such that x + αd is
just inside the boundary to avoid the boundary singularity.

Like the penalty method, the interior point method begins with a low value for
ρ and slowly increases it until convergence. The interior point method is typically
terminated when the difference between subsequent points is less than a certain
threshold. Figure 10.13 shows an example of the effect of incrementally increasing
ρ.

The interior point method requires a feasible point from which to start the
search. One convenient method for finding a feasible point is to optimize the
quadratic penalty function

minimize
x

pquadratic(x) (10.48)
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function interior_point_method(f, p, x; ρ=1, γ=2, ϵ=0.001)
delta = Inf
while delta > ϵ

x′ = minimize(x -> f(x) + p(x)/ρ, x)
delta = norm(x′ - x)
x = x′
ρ *= γ

end
return x

end

Algorithm 10.3. The interior point
method for objective function f,
barrier function p, initial point x,
initial penalty ρ > 0, penalty mul-
tiplier γ > 1, and stopping toler-
ance ϵ > 0.

x

−2 0 2

−2

0

2

x1

x
2

ρ = 0.5

x

−2 0 2

x1

ρ = 1.0

x

−2 0 2

x1

ρ = 10.0

x

−2 0 2

x1

ρ = 100.0

Figure 10.13. The interior point
method with the inverse barrier
applied to the flower function, ap-
pendix B.4, and the constraint

x2
1 + x2

2 ≥ 2
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10.10 Summary

• Constraints are requirements on the design points that a solution must satisfy.

• Some constraints can be transformed or substituted into the problem to result
in an unconstrained optimization problem.

• Analyticalmethods using Lagrangemultipliers yield the generalizedLagrangian
and the necessary conditions for optimality under constraints.

• A constrained optimization problem has a dual problem formulation that is
easier to solve and whose solution is a lower bound of the solution to the
original problem.

• Penalty methods penalize infeasible solutions and often provide gradient
information to the optimizer to guide infeasible points toward feasibility.

• Interior point methods maintain feasibility but use barrier functions to avoid
leaving the feasible set.

10.11 Exercises

Exercise 10.1. Solve
minimize

x
x

subject to x ≥ 0
(10.49)

using the quadratic penalty method with ρ > 0. Solve the problem in closed form.
Exercise 10.2. Solve the problem above using the count penalty method with
ρ > 1 and compare it to the quadratic penalty method.
Exercise 10.3. Suppose that you are solving a constrained problem with the
penalty method. You notice that the iterates remain infeasible and you decide to
stop the algorithm. What can you do to be more successful in your next attempt?
Exercise 10.4. Consider a simple univariate minimization problem where you
minimize a function f (x) subject to x ≥ 0. Assume that you know that the
constraint is active, that is, x∗ = 0 where x∗ is the minimizer and f ′(x∗) > 0 from
the optimality conditions. Show that solving the same problem with the penalty
method

f (x) + (min(x, 0))2 (10.50)
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yields an infeasible solution with respect to the original problem.

Exercise 10.5. What is the advantage of the augmented Lagrange method com-
pared to the quadratic penalty method?

Exercise 10.6. When would you use the barrier method in place of the penalty
method?

Exercise 10.7. Give an example of a smooth optimization problem, such that,
for any penalty parameter ρ > 0, there exists a starting point x(1) for which the
steepest descent method diverges.

Exercise 10.8. Suppose you have an optimization problem

minimize
x

f (x)

subject to h(x) = 0

g(x) ≤ 0

(10.51)

but do not have an initial feasible design. How would you find a feasible point
with respect to the constraints, provided that one exists?

Exercise 10.9. Solve the constrained optimization problem

minimize
x

sin

(
4

x

)

subject to x ∈ [1, 10]

(10.52)

using both the transform x = ta,b(x̂) and a sigmoid transform for constraint
bounds x ∈ [a, b]:

x = s(x̂) = a +
(b− a)

1 + e−x̂
(10.53)

Why is the t transform better than the sigmoid transform?

Exercise 10.10. Give an example of a quadratic objective function involving two
design variables where the addition of a linear constraint results in a different
optimum.

Exercise 10.11. Suppose we want to minimize x3
1 + x2

2 + x3 subject to the con-
straint that x1 + 2x2 + 3x3 = 6. How might we transform this into an uncon-
strained problem with the same minimizer?
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Exercise 10.12. Supposewewant tominimize−x1− 2x2 subject to the constraints
ax1 + x2 ≤ 5 and x1, x2 ≥ 0. If a is a bounded constant, what range of values of a

will result in an infinite number of optimal solutions?

Exercise 10.13. Consider using a penalty method to optimize

minimize
x

1− x2

subject to |x| ≤ 2
(10.54)

Optimization with the penalty method typically involves running several op-
timizations with increasing penalty weights. Impatient engineers may wish to
optimize once using a very large penalty weight. Explain what issues are encoun-
tered for both the count penalty method and the quadratic penalty method.



11 Linear Constrained Optimization

Linear programming involves solving optimization problems with linear objec-
tive functions and linear constraints. Many problems are naturally described by
linear programs, including problems from fields as diverse as transportation,
communication networks, manufacturing, economics, and operations research.
Many problems that are not naturally linear can often be approximated by linear
programs. Several methods have been developed for exploiting the linear struc-
ture. Modern techniques and hardware can globally minimize problems with
millions of variables and millions of constraints.1

1 This chapter is a short intro-
duction to linear programs and
one variation of the simplex al-
gorithm used to solve them. Sev-
eral textbooks are dedicated en-
tirely to linear programs, includ-
ing R. J. Vanderbei, Linear Program-
ming: Foundations and Extensions,
4th ed. Springer, 2014. There are a
variety of packages for solving lin-
ear programs, such as Convex.jl
and JuMP.jl, both of which in-
clude interfaces to open-source
and commercial solvers.

11.1 Problem Formulation

A linear programming problem, called a linear program,2 can be expressed in 2 A quadratic program is a gen-
eralization of a linear program,
where the objective function is
quadratic and the constraints are
linear. Common approaches for
solving such problems include
some of the algorithms discussed
in earlier chapters, including the
interior point method, augmented
Lagrange method, and conjugate
gradient. The simplexmethod, cov-
ered in this chapter, has also been
adapted for optimizing quadratic
programs. J. Nocedal and S. J.
Wright, Numerical Optimization,
2nd ed. Springer, 2006.

several forms. Each linear program consists of a linear objective function and a
set of linear constraints:

minimize
x

c⊤x

subject to w
(i)⊤
LE x ≤ bi for i ∈ {1, 2, . . .}

w
(j)⊤
GE x ≥ bj for j ∈ {1, 2, . . .}

w
(k)⊤
EQ x = bk for k ∈ {1, 2, . . .}

(11.1)

where i, j, and k vary over finite sets of constraints. Such an optimization problem
is given in example 11.1. Transforming real problems into this mathematical form
is often nontrivial. This text focuses on the algorithms for obtaining solutions, but
other texts discuss how to go about modeling real problems.3 Several interesting 3 See, for example, H. P. Williams,

Model Building in Mathematical Pro-
gramming, 5th ed. Wiley, 2013.conversions are given in example 11.2.
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The following problem has a linear objective and linear constraints, making
it a linear program.

minimize
x1,x2,x3

2x1 − 3x2 + 7x3

subject to 2x1 + 3x2 − 8x3 ≤ 5

4x1 + x2 + 3x3 ≤ 9

x1 − 5x2 − 3x3 ≥ −4

x1 + x2 + 2x3 = 1

Example 11.1. An example linear
program.

Many problems can be converted into linear programs that have the same
solution. Two examples are L1 and L∞ minimization problems:

minimize‖Ax− b‖1 minimize‖Ax− b‖∞

The first problem is equivalent to solving

minimize
x,s

1⊤s

subject to Ax− b ≤ s

Ax− b ≥ −s

with the additional variables s.
The second problem is equivalent to solving

minimize
x,t

t

subject to Ax− b ≤ t1

Ax− b ≥ −t1

with the additional variable t.

Example 11.2. Common normmin-
imization problems that can be con-
verted into linear programs.
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11.1.1 General Form
We can write linear programs more compactly using matrices and arrive at the
general form:4 4 Here, each constraint is element-

wise. For example, in writing
a ≤ b,

we mean ai ≤ bi for all i.

minimize
x

c⊤x

subject to ALEx ≤ bLE
AGEx ≥ bGE
AEQx = bEQ

(11.2)

11.1.2 Standard Form
The general linear program given in equation (11.2) can be converted into standard
form where all constraints are less-than inequalities and the design variables are
nonnegative

minimize
x

c⊤x

subject to Ax ≤ b

x ≥ 0

(11.3)

Greater-than inequalities are inverted, and equality constraints are split in two

AGEx ≥ bGE → −AGEx ≤ −bGE

AEQx = bEQ →







AEQx ≤ bEQ
−AEQx ≤ −bEQ

(11.4)

We must ensure that all x entries are nonnegative as well. Suppose we start
with a linear program where x is not constrained to be nonnegative:

minimize
x

c⊤x

subject to Ax ≤ b
(11.5)
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We replace x with x+ − x− and constrain x+ ≥ 0 and x− ≥ 0:

minimize
x+ ,x−

[

c⊤ −c⊤
]
[

x+

x−

]

subject to
[

A −A
]
[

x+

x−

]

≤ b

[

x+

x−

]

≥ 0

(11.6)

The linear objective function c⊤x forms a flat ramp. The function increases in
the direction of c, and, as a result, all contour lines are perpendicular to c and
parallel to one another as shown in figure 11.1.

c

c ⊤
x = const

Figure 11.1. The contours of a lin-
ear objective function c⊤x, which
increase in the direction of c.

A single inequality constraint w⊤x ≤ b forms a half-space, or a region on one
side of a hyperplane. The hyperplane is perpendicular to w and is defined by
w⊤x = b as shown in figure 11.2. The region w⊤x > b is on the +w side of the
hyperplane, whereas w⊤x < b is on the −w side of the hyperplane.

w

w⊤x < b

w⊤x > b

w ⊤
x =

b

Figure 11.2. A linear constraint.

X

Figure 11.3. The intersection of lin-
ear constraints is a convex set.

Half-spaces are convex sets (see appendix C.3), and the intersection of convex
sets is convex, as shown in figure 11.3. Thus, the feasible set of a linear program
will always form a convex set. Convexity of the feasible set, along with convexity
of the objective function, implies that if we find a local feasible minimum, it is
also a global feasible minimum.

The feasible set is a convex region enclosed by flat faces. Depending on the
region’s configuration, the solution can lie at a vertex, on an edge, or on an entire
face. If the problem is not properly constrained, the solution can be unbounded,
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and, if the system is over-constrained, there is no feasible solution. Several such
cases are shown in figure 11.4.

x∗

−c

x1

x
2

One Solution

−c

x1

Unbounded Solution

x∗

−c

x1

Infinite Solutions

−c

x1

No Solution

Figure 11.4. Several different lin-
ear problem forms with different
solutions.

11.1.3 Equality Form
Linear programs are often solved in a third form, the equality form

minimize
x

c⊤x

subject to Ax = b

x ≥ 0

(11.7)

where x and c each have n components, A is an m × n matrix, and b has m

components. In other words, we have n nonnegative design variables and a
system of m equations defining equality constraints.

The equality form has constraints in two parts. The first, Ax = b, forces the
solution to lie in an affine subspace.5 Such a constraint is convenient because 5 Informally, an affine subspace is a

vector space that has been trans-
lated such that its origin in a higher-
dimensional space is not necessar-
ily 0.

search techniques can constrain themselves to the constrained affine subspace to
remain feasible. The second part of the constraints requires x ≥ 0, which forces
the solution to lie in the positive quadrant. The feasible set is thus the nonnegative
portion of an affine subspace. Example 11.3 provides a visualization for a simple
linear program.

Any linear program in standard form can be transformed to equality form. The
constraints are converted to:

Ax ≤ b → Ax + s = b, s ≥ 0 (11.8)
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Consider the standard-form linear program:

minimize
x

x

subject to x ≥ 1

When we convert this to equality form, we get

minimize
x,s

x

subject to x− s = 1

x, s ≥ 0

The equality constraint requires that feasible points fall on the line x− s =

1. That line is a one-dimensional affine subspace of the two-dimensional
Euclidean space.

Example 11.3. Feasible sets for
the equality form are hyperplanes.

2 4

2

x

s

by introducing slack variables s. These variables take up the extra slack to enforce
equality.

Starting with a linear program:

minimize
x

c⊤x

subject to Ax ≤ b

x ≥ 0

(11.9)

We introduce the slack variables:

minimize
x,s

[

c⊤ 0⊤
]
[

x

s

]

subject to
[

A I
]
[

x

s

]

= b

[

x

s

]

≥ 0

(11.10)
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Example 11.4 demonstrates converting from standard to equality form.

Consider the linear program

minimize
x

5x1 + 4x2

subject to 2x1 + 3x2 ≤ 5

4x1 + x2 ≤ 11

To convert to equality form, we first introduce two slack variables:

minimize
x

5x1 + 4x2

subject to 2x1 + 3x2 + s1 = 5

4x1 + x2 + s2 = 11

s1, s2 ≥ 0

We then split x:

minimize
x

5(x+1 − x−1 ) + 4(x+2 − x−2 )

subject to 2(x+1 − x−1 ) + 3(x+2 − x−2 ) + s1 = 5

4(x+1 − x−1 ) + (x+2 − x−2 ) + s2 = 11

x+1 , x−1 , x+2 , x−2 , s1, s2 ≥ 0

Example 11.4. Converting a linear
program to equality form.

11.2 Simplex Algorithm

The simplex algorithm solves linear programs by moving from vertex to vertex of
the feasible set.6 The method is guaranteed to arrive at an optimal solution so

6 The simplex algorithm was orig-
inally developed in the 1940s by
George Dantzig. A history of the
development can be found here:
G. B. Dantzig, ‘‘Origins of the Sim-
plex Method,’’ in A History of Sci-
entific Computing, S. G. Nash, ed.,
ACM, 1990, pp. 141–151.

long as the linear program is feasible and bounded.
The simplex algorithm operates on equality-form linear programs (Ax = b,

x ≥ 0). We assume that the rows of A are linearly independent.7 We also assume
7 A matrix whose rows are linearly
independent is said to have full
row rank. Linear independence is
achieved by removing redundant
equality constraints.

that the problem has no more equality constraints than it has design variables
(m ≤ n), which ensures that the problem is not over constrained. A preprocessing
phase guarantees that A satisfies these conditions.
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11.2.1 Vertices
Linear programs in equality form have feasible sets in the form of convex polytopes,
which are geometric objects with flat faces. These polytopes are formed by the
intersection of the equality constraints with the positive quadrant. Associated
with a polytope are vertices, which are points in the feasible set that do not lie
between any other points in the feasible set.

The feasible set consists of several different types of design points. Points on
the interior are never optimal because they can be improved by moving along
−c. Points on faces can be optimal only if the face is perpendicular to c. Points
on faces not perpendicular to c can be improved by sliding along the face in the
direction of the projection of −c onto the face. Similarly, points on edges can be
optimal only if the edge is perpendicular to c, and can otherwise be improved
by sliding along the projection of −c onto the edge. Finally, vertices can also be
optimal.

The simplex algorithm produces an optimal vertex. If a linear program contains
feasible points, it also contains at least one vertex. Furthermore, if a linear program
has solutions, then at least one solution must lie at a vertex. In the case where an
entire edge or face is optimal, a vertex-solution is just as good as any other.

X

vertex

Figure 11.5. In twodimensions, any
vertex will have at least two active
constraints.

Every vertex for a linear program in equality form can be uniquely defined by
n−m components of x that equal zero. These components are actively constrained
by xi ≥ 0. Figure 11.5 visualizes the active constraints needed to identify a vertex.

The equality constraint Ax = b has a unique solution when A is square.
We have assumed that m ≤ n, so choosing m design variables and setting the
remaining variables to zero effectively removes n−m columns of A, yielding an
m×m constraint matrix (see example 11.5).

The indices into the components {1, . . . , n} of any vertex can be partitioned
into two sets, B and V , such that:

• The design values associated with indices in V are zero:

i ∈ V =⇒ xi = 0 (11.11)

• The design values associated with indices in B may or may not be zero:

i ∈ B =⇒ xi ≥ 0 (11.12)

• B has exactly m elements and V has exactly n−m elements.
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For a problem with 5 design variables and 3 constraints, setting 2 variables
to zero uniquely defines a point.





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Example 11.5. Setting n−m com-
ponents of x to zero can uniquely
define a point.

We use xB to refer to the vector consisting of the components of x that are in B
and xV to refer to the vector consisting of the components of x that are in V . Note
that xV = 0.

The vertex associated with a partition (B,V) can be obtained using the m×m

matrix AB formed by the m columns of A selected by B:8 8 If B and V identify a vertex, then
the columns of AB must be linearly
independent because Ax = b must
have exactly one solution. Hence,
ABxB = b must have exactly one
solution. This linear independence
guarantees that AB is invertible.

Ax = ABxB = b → xB = A−1
B b (11.13)

Knowing xB is sufficient to construct x; the remaining design variables are zero. Al-
gorithm 11.1 implements this procedure, and example 11.6 demonstrates verifying
that a given design point is a vertex.

mutable struct LinearProgram
A
b
c

end
function get_vertex(B, LP)

A, b, c = LP.A, LP.b, LP.c
b_inds = sort!(collect(B))
AB = A[:,b_inds]
xB = AB\b
x = zeros(length(c))
x[b_inds] = xB
return x

end

Algorithm 11.1. A method for ex-
tracting the vertex associated with
a partition B and a linear program
LP in equality form. We introduce
the special type LinearProgram for
linear programs.
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While every vertex has an associated partition (B,V), not every partition corre-
sponds to a vertex. A partition corresponds to a vertex only if AB is nonsingular
and the design obtained by applying equation (11.13) is feasible.9 Identifying par- 9 For example, B = {1, 2} for the

constraints
[

1 2 0
1 2 1

]




x1

x2

x3



 =

[
1
1

]

corresponds to
[

1 2
1 2

] [
x1

x2

]

=

[
1
1

]

which does not produce an invert-
ible AB and does not have a unique
solution.

titions that correspond to vertices is nontrivial, and we show in section 11.2.4 that
finding such a partition involves solving a linear program! The simplex algorithm
operates in two phases—an initialization phase that identifies a vertex partition and
an optimization phase that transitions between vertex partitions toward a partition
corresponding to an optimal vertex. We will discuss both of these phases later in
this section.

Consider the constraints:





1 1 1 1

0 −1 2 3

2 1 2 −1




 x =






2

−1

3




 , x ≥ 0

Consider the design point x = [1, 1, 0, 0]. We can verify that x is feasible
and that it has nomore than three nonzero components. We can choose either
B = {1, 2, 3} or B = {1, 2, 4}. Both

A{1,2,3} =






1 1 1

0 −1 2

2 1 2






and

A{1,2,4} =






1 1 1

0 −1 3

2 1 −1






are invertible. Thus, x is a vertex of the feasible set polytope.

Example 11.6. Verifying that a de-
sign point is a vertex for constraints
in equality form.

11.2.2 First-Order Necessary Conditions
The first-order necessary conditions (FONCs) for optimality are used to determine
when a vertex is optimal and to inform how to transition to a more favorable
vertex. We construct a Lagrangian for the equality form of the linear program:10

10 Note that in x ≥ 0 the polarity
of the inequality must be inverted
by multiplying both sides by −1,
yielding the negative sign in front
of µ. The Lagrangian can be de-
fined with either positive or neg-
ative λ.

L(x,µ,λ) = c⊤x− µ⊤x− λ⊤(Ax− b) (11.14)
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with the following FONCs:

1. feasibility: Ax = b, x ≥ 0

2. dual feasibility: µ ≥ 0

3. complementary slackness: µ⊙ x = 0

4. stationarity: A⊤λ+ µ = c

The FONCs are sufficient conditions for optimality for linear programs. Thus,
if µ and λ can be computed for a given vertex and all four FONC equations are
satisfied, then the vertex is optimal.

We can decompose the stationarity condition into B and V components:

A⊤λ+ µ = c →







A⊤Bλ+ µB = cB
A⊤V λ+ µV = cV

(11.15)

We can choose µB = 0 to satisfy complementary slackness. The value of λ can
be computed from B:11 11 We use A−⊤ to refer to the trans-

pose of the inverse of A:

A−⊤ =
(

A−1
)⊤

=
(

A⊤
)−1

A⊤Bλ+ µB
︸︷︷︸

=0

= cB

λ = A−⊤B cB

(11.16)

We can use this to obtain

A⊤V λ+ µV = cV
µV = cV −A⊤V λ

µV = cV −
(

A−1
B AV

)⊤
cB

(11.17)

Knowing µV allows us to assess the optimality of the vertices. If µV contains
negative components, then dual feasibility is not satisfied and the vertex is sub-
optimal.
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11.2.3 Optimization Phase
The simplex algorithmmaintains a partition (B,V), which corresponds to a vertex
of the feasible set polytope. The partition can be updated by swapping indices
between B and V . Such a swap equates to moving from one vertex along an edge
of the feasible set polytope to another vertex. If the initial partition corresponds
to a vertex and the problem is bounded, the simplex algorithm is guaranteed to
converge to an optimum.

A transition x → x′ between vertices must satisfy Ax′ = b. Starting with a
partition defined by B, we choose an entering index q ∈ V that is to enter B using
one of the heuristics described near the end of this section. The new vertex x′

must satisfy:
Ax′ = ABx′B + A{q}x

′
q = ABxB = Ax = b (11.18)

One leaving index p ∈ V in x′B becomes zero during the transition and is replaced
by the column of A corresponding to index q. This action is referred to as pivoting.

We can solve for the new design point

x′B = xB −A−1
B A{q}x

′
q (11.19)

A particular leaving index p ∈ B becomes active when:
(
x′B
)

p
= 0 = (xB)p −

(

A−1
B A{q}

)

p
x′q (11.20)

and is thus obtained by increasing xq = 0 to x′q with:

x′q =
(xB)p

(

A−1
B A{q}

)

p

(11.21)

The leaving index is obtained using theminimum ratio test, which computes for
each potential leaving index and selects the one with minimum x′q. We then swap
p and q between B and V . The edge transition is implemented in algorithm 11.2.
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function edge_transition(LP, B, q)
A, b, c = LP.A, LP.b, LP.c
n = size(A, 2)
b_inds = sort(B)
n_inds = sort!(setdiff(1:n, B))
AB = A[:,b_inds]
d, xB = AB\A[:,n_inds[q]], AB\b

p, xq′ = 0, Inf
for i in 1 : length(d)

if d[i] > 0
v = xB[i] / d[i]
if v < xq′

p, xq′ = i, v
end

end
end
return (p, xq′)

end

Algorithm 11.2. Amethod for com-
puting the index p and the new
coordinate value x′q obtained by
increasing index q of the vertex
defined by the partition B in the
equality-form linear program LP.

The effect that a transition has on the objective function can be computed using
x′q. The objective function value at the new vertex is12 12 Here, we used the fact that λ =

A−⊤B cB and that A⊤{q}λ = cq − µq.
c⊤x′ = c⊤B x′B + cqx′q (11.22)

= c⊤B
(

xB −A−1
B A{q}x

′
q

)

+ cqx′q (11.23)
= c⊤B xB − c⊤BA−1

B A{q}x
′
q + cqx′q (11.24)

= c⊤B xB −
(
cq − µq

)
x′q + cqx′q (11.25)

= c⊤x + µqx′q (11.26)

Choosing an entering index q decreases the objective function value by

c⊤x′ − c⊤x = µqx′q (11.27)

The objective function decreases only if µq is negative. In order to progress to-
ward optimality, we must choose an index q in V such that µq is negative. If all
components of µV are positive, we have found a global optimum.

Since there can be multiple negative entries in µV , different heuristics can be
used to select an entering index:13

13 Modern implementations use
more sophisticated rules. For ex-
ample, see J. J. Forrest and D. Gold-
farb, ‘‘Steepest-Edge Simplex Algo-
rithms for Linear Programming,’’
Mathematical Programming, vol. 57,
no. 1, pp. 341–374, 1992.
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• Greedy heuristic, which chooses a q that maximally reduces c⊤x.

• Dantzig’s rule, which chooses the q with the most negative entry in µ. This rule
is easy to calculate, but it does not guarantee the maximum reduction in c⊤x.
It is also sensitive to scaling of the constraints.14 14 For constraint A⊤x = b →

αA⊤x = αb, α > 0, we do
not change the solution but the
Lagrange multipliers are scaled,
λ→ α−1λ.

• Bland’s rule, which chooses the first q with a negative entry in µ. When used on
its own, Bland’s rule tends to result in poor performance in practice. However,
this rule can help us prevent cycles, which occur when we return to a vertex
we have visited before without decreasing the objective function. This rule is
usually used only after no improvements have been made for several iterations
of a different rule to break out of a cycle and ensure convergence.

One iteration of the simplex method’s optimization phase moves a vertex
partition to a neighboring vertex based on a heuristic for the entering index. Algo-
rithm 11.3 implements such an iteration with the greedy heuristic. Example 11.7
demonstrates using the simplex algorithm starting from a known vertex partition
to solve a linear program.

11.2.4 Initialization Phase
The optimization phase of the simplex algorithm is implemented in algorithm 11.4.
Unfortunately, algorithm 11.4 requires an initial partition that corresponds to a
vertex. If we do not have such a partition, we must solve an auxiliary linear program
to obtain this partition as part of an initialization phase.

The auxiliary linear program to be solved in the initialization phase includes
extra variables z ∈ Rm, which we seek to zero out:15 15 The values for z represent the

amount by which Ax = b is vi-
olated. By zeroing out z, we find
a feasible point. If, in solving the
auxiliary problem, we do not find
a vertex with a zeroed-out z, then
we can conclude that the prob-
lem is infeasible. Furthermore, it
is not always necessary to add
all m extra variables, especially
when slack variables are included
when transforming between stan-
dard and equality form.

minimize
x,z

[

0⊤ 1⊤
]
[

x

z

]

subject to
[

A Z
]
[

x

z

]

= b

[

x

z

]

≥ 0

(11.28)



11.2. s implex algorithm 203

Consider the equality-form linear program with

A =

[

1 1 1 0

−4 2 0 1

]

, b =

[

9

2

]

, c =








3

−1

0

0








and the initial vertex defined by B = {3, 4}. After verifying that B defines a
feasible vertex, we can begin one iteration of the simplex algorithm.

We extract xB :

xB = A−1
B b =

[

1 0

0 1

]−1 [

9

2

]

=

[

9

2

]

We then compute λ:

λ = A−⊤B cB =

[

1 0

0 1

]−⊤ [
0

0

]

= 0

and µV :

µV = cV −
(

A−1
B AV

)⊤
cB =

[

3

−1

]

−




[

1 0

0 1

]−1 [

1 1

−4 2

]



⊤ [
0

0

]

=

[

3

−1

]

Wefind thatµV contains negative elements, so our currentB is suboptimal.
We will pivot on the index of the only negative element, q = 2. An edge
transition is run from xB in the direction −A−1

B A{q} = [1, 2].
Using equation (11.19), we increase x′q until a new constraint becomes

active. In this case, x′q = 1 causes x3 to become zero. We update our set of
basic indices to B = {2, 3}.

In the second iteration, we find:

xB =

[

1

8

]

, λ =

[

0

−1/2

]

, µV =

[

1

1/2

]

.

The vertex is optimal because µV has no negative entries. Our algorithm
thus terminateswithB = {2, 3}, forwhich the design point is x∗ = [0, 1, 8, 0].

Example 11.7. Solving a linear pro-
gram with the simplex algorithm.
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function step_lp!(B, LP)
A, b, c = LP.A, LP.b, LP.c
n = size(A, 2)
b_inds = sort!(B)
n_inds = sort!(setdiff(1:n, B))
AB, AV = A[:,b_inds], A[:,n_inds]
xB = AB\b
cB = c[b_inds]
λ = AB' \ cB
cV = c[n_inds]
μV = cV - AV'*λ

q, p, xq′, Δ = 0, 0, Inf, Inf
for i in 1 : length(μV)

if μV[i] < 0
pi, xi′ = edge_transition(LP, B, i)
if μV[i]*xi′ < Δ

q, p, xq′, Δ = i, pi, xi′, μV[i]*xi′
end

end
end
if q == 0
return (B, true) # optimal point found

end

if isinf(xq′)
error("unbounded")

end

j = findfirst(isequal(b_inds[p]), B)
B[j] = n_inds[q] # swap indices
return (B, false) # new vertex but not optimal

end

Algorithm 11.3. A single iteration
of the simplex algorithm in which
the set B is moved from one ver-
tex to a neighbor while maximally
decreasing the objective function.
Here, step_lp! takes a partition
defined by B and a linear program
LP.

function minimize_lp!(B, LP)
done = false
while !done

B, done = step_lp!(B, LP)
end
return B

end

Algorithm 11.4. Minimizing a lin-
ear program given a vertex parti-
tion defined by B and a linear pro-
gram LP.
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where Z is a diagonal matrix whose diagonal entries are

Zii =







+1 if bi ≥ 0

−1 otherwise.
(11.29)

The auxiliary linear program is solved with a partition defined by B, which
selects only the z values. The corresponding vertex has x = 0, and each z-element
is the absolute value of the corresponding b-value: zj = |bj|. This initial vertex
can easily be shown to be feasible.

Example 11.8 demonstrates using an auxiliary linear program to obtain a
feasible vertex.

Consider the equality-form linear program:

minimize
x1,x2,x3

c1x1 + c2x2 + c3x3

subject to 2x1 − 1x2 + 2x3 = 1

5x1 + 1x2 − 3x3 = −2

x1, x2, x3 ≥ 0

We can identify a feasible vertex by solving:

minimize
x1,x2,x3,z1,z2

z1 + z2

subject to 2x1 − 1x2 + 2x3 + z1 = 1

5x1 + 1x2 − 3x3 − z2 = −2

x1, x2, x3, z1, z2 ≥ 0

with an initial vertex defined by B = {4, 5}.
The initial vertex has:

x
(1)
B = A−1

B bB =

[

1 0

0 −1

]−1 [

1

−2

]

=

[

1

2

]

and is thus x(1) = [0, 0, 0, 1, 2]. Solving the auxiliary problem yields x∗ ≈
[0.045, 1.713, 1.312, 0, 0]. Thus [0.045, 1.713, 1.312] is a feasible vertex in the
original problem.

Example 11.8. Using an auxiliary
linear program to obtain a feasible
vertex.
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The partition obtained by solving the auxiliary linear program will produce a
feasible design point, Ax = b because z will have been zeroed out. If z is nonzero,
then the original linear program is infeasible. If z is zero, then the resulting
partition can be used as the initial partition for the optimization phase of the
simplex algorithm. The original problem must be slightly modified to incorporate
the new z variables:

minimize
x,z

[

c⊤ 0⊤
]
[

x

z

]

subject to

[

A I

0 I

] [

x

z

]

=

[

b

0

]

[

x

z

]

≥ 0

(11.30)

The z values must be included. Despite their vector counterparts being zero, it
is possible that some indices in the components of z are included in the initial
partition B. One can inspect the initial partition and include only the specific
components that are needed.

The solution (x∗, z∗) obtained by solving the second LP will have z∗ = 0. Thus,
x∗ will be a solution to the original linear problem.

An implementation for the complete simplex algorithm is given in algorithm 11.5.

11.3 Dual Certificates

Suppose we have a candidate solution and we want to verify that it is optimal.
Verifying optimality using dual certificates (algorithm 11.6) is useful in many cases,
such as debugging our linear program code.

We know from the FONCs for constrained optimization that the optimal value
of the dual problem d∗ is a lower bound of the optimal value of the primal problem
p∗. Linear programs are linear and convex, and one can show that the optimal
value of the dual problem is also the optimal value of the primal problem, d∗ = p∗.
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function minimize_lp(LP)
A, b, c = LP.A, LP.b, LP.c
m, n = size(A)
z = ones(m)
Z = Matrix(Diagonal([j ≥ 0 ? 1 : -1 for j in b]))

A′ = hcat(A, Z)
b′ = b
c′ = vcat(zeros(n), z)
LP_init = LinearProgram(A′, b′, c′)
B = collect(1:m).+n
minimize_lp!(B, LP_init)

if any(i-> i > n, B)
error("infeasible")

end

A′′ = [A Matrix(1.0I, m, m);
zeros(m,n) Matrix(1.0I, m, m)]

b′′ = vcat(b, zeros(m))
c′′ = c′
LP_opt = LinearProgram(A′′, b′′, c′′)
minimize_lp!(B, LP_opt)
return get_vertex(B, LP_opt)[1:n]

end

Algorithm 11.5. The simplex algo-
rithm for solving linear programs
in equality form when an initial
partition is not known.
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The primal linear program can be converted to its dual form as follows:16 16 An alternative to the simplex al-
gorithm, the self-dual simplex algo-
rithm, tends to be faster in prac-
tice. It does not require that the ma-
trix AB satisfy xB = A−1

B b ≥ 0.
The self-dual simplex algorithm is
a modification of the simplex al-
gorithm for the dual of the linear
programming problem in standard
form.

Primal Form (equality) Dual Form

minimize
x

c⊤x

subject to Ax = b

x ≥ 0

maximize
µ

b⊤µ

subject to A⊤µ ≤ c

If the primal problem has n variables and m equality constraints, then the dual
problem has m variables and n constraints. Furthermore, the dual of the dual is
the primal problem.

Optimality can be assessed by verifying three properties. If someone claims
(x∗,µ∗) is optimal, we can quickly verify the claim by checking whether all three
of the following conditions are satisfied:

1. x∗ is feasible in the primal problem.

2. µ∗ is feasible in the dual problem.

3. p∗ = c⊤x∗ = b⊤µ∗ = d∗.

Dual certificates are used in example 11.9 to verify the solution to a linear
program.

function dual_certificate(LP, x, μ, ϵ=1e-6)
A, b, c = LP.A, LP.b, LP.c
primal_feasible = all(x .≥ 0) && A*x ≈ b
dual_feasible = all(A'*μ .≤ c)
return primal_feasible && dual_feasible &&

isapprox(c⋅x, b⋅μ, atol=ϵ)
end

Algorithm 11.6. A method for
checking whether a candidate so-
lution given by design point x and
dual point μ for the linear program
LP in equality form is optimal. The
parameter ϵ controls the tolerance
for the equality constraint.
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Consider the standard-form linear program with

A =






1 1 −1

−1 2 0

1 2 3




 , b =






1

−2

5




 , c =






1

1

−1






We would like to determine whether x∗ = [2, 0, 1] and µ∗ = [1, 0, 0] are an
optimal solution pair. We first verify that x∗ is feasible:

Ax∗ = [1,−2, 5] = b, x∗ ≥ 0

We then verify that µ∗ is dual-feasible:

A⊤µ∗ ≈ [1, 1,−1] ≤ c

Finally, we verify that p∗ and d∗ are the same:

p∗ = c⊤x∗ = 1 = b⊤µ∗ = d∗

We conclude that (x∗,µ∗) are optimal.

Example 11.9. Verifying a solution
using dual certificates.
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11.4 Summary

• Linear programs are problems consisting of a linear objective function and
linear constraints.

• The simplex algorithm can optimize linear programs globally in an efficient
manner.

• Dual certificates allow us to verify that a candidate primal-dual solution pair
is optimal.

11.5 Exercises

Exercise 11.1. Suppose you do not know any optimization algorithm for solving
a linear program. You decide to evaluate all the vertices and determine, by in-
spection, which one minimizes the objective function. Give a loose upper bound
on the number of possible minimizers you will examine. Furthermore, does this
method properly handle all linear constrained optimization problems?

Exercise 11.2. If the program in example 11.1 is bounded below, argue that the
simplex method must converge.

Exercise 11.3. Suppose we want to minimize 6x1 + 5x2 subject to the constraint
3x1 − 2x2 ≥ 5. How would we translate this problem into a linear program in
equality form with the same minimizer?

Exercise 11.4. Suppose your optimization algorithm has found a search direction
d and you want to conduct a line search. However, you know that there is a linear
constraint w⊤x ≥ 0. Howwould youmodify the line search to take this constraint
into account? You can assume that your current design point is feasible.

Exercise 11.5. Reformulate the linear program

minimize
x

c⊤x

subject to Ax ≥ 0
(11.31)

into an unconstrained optimization problem with a log barrier penalty.



12 Multiobjective Optimization

Previous chapters have developed methods for optimizing single-objective func-
tions, but this chapter is concerned with multiobjective optimization, or vector op-
timization, where we must optimize with respect to several objectives simulta-
neously. Engineering is often a tradeoff between cost, performance, and time-
to-market, and it is often unclear how to prioritize different objectives. We will
discuss various methods for transforming vector-valued objective functions to
scalar-valued objective functions so that we can use the algorithms discussed in
previous chapters to arrive at an optimum. In addition, wewill discuss algorithms
for identifying the set of design points that represent the best tradeoff between
objectives, without having to commit to a particular prioritization of objectives.
These design points can then be presented to experts who can then identify the
most desirable design.1 1 Additional methods are surveyed

in R. T. Marler and J. S. Arora, ‘‘Sur-
vey of Multi-Objective Optimiza-
tion Methods for Engineering,’’
Structural and Multidisciplinary Op-
timization, vol. 26, no. 6, pp. 369–
395, 2004. For a textbook dedicated
entirely to multiobjective optimiza-
tion, see K. Miettinen, Nonlinear
Multiobjective Optimization. Kluwer
Academic Publishers, 1999.

12.1 Pareto Optimality

The notion of Pareto optimality is useful when discussing problems where there
are multiple objectives. A design is Pareto optimal if it is impossible to improve
in one objective without worsening at least one other objective. In multiobjective
design optimization, we can generally focus our efforts on designs that are Pareto
optimal without having to commit to a particular tradeoff between objectives.
This section introduces some definitions and concepts that are helpful when
discussing approaches to identifying Pareto-optimal designs.
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12.1.1 Dominance
In single-objective optimization, two design points x and x′ can be ranked objec-
tively based on their scalar function values. The point x′ is better whenever f (x′)
is less than f (x).

Inmultiobjective optimization, our objective function f returns an m-dimensional
vector of values y when evaluated at a design point x. The different dimensions
of y correspond to different objectives, sometimes also referred to as metrics or
criteria. We can objectively rank two design points x and x′ only when one is
better in at least one objective and no worse in any other. That is, x dominates x′ if
and only if

fi(x) ≤ fi(x
′) for all i in {1, . . . , m}

and fi(x) < fi(x
′) for some i

(12.1)

as compactly implemented in algorithm 12.1.

dominates(y, y′) = all(y .≤ y′) && any(y .< y′) Algorithm 12.1. A method for
checking whether x dominates x′,
where y is the vector of objective
values for f(x) and y′ is the vector
of objective values for f(x′).Figure 12.1 shows that in multiple dimensions there are regions with domi-

nance ambiguity. This ambiguity arises whenever x is better in some objectives
and x′ is better in others. Several methods exist for resolving these ambiguities.

f (x)

y

f (x′) < f (x)

x′ is better f (x′) > f (x)

x′ is worse

f(x)

y1

y2

f(x′) < f(x)

x′ is better

f(x′) > f(x)

x′ is worse

Single Objective Multiple Objectives Figure 12.1. Design points can
be objectively ranked in single-
objective optimization but can
be objectively ranked in multi-
objective optimization only in
some cases.
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12.1.2 Pareto Frontier
In mathematics, an image of an input set through some function is the set of
all possible outputs of that function when evaluated on elements of that input
set. We will denote the image of X through f as Y , and we will refer to Y as
the criterion space. Figure 12.2 shows examples of criterion space for problems
with single and multiple objectives. As illustrated, the criterion space in single-
objective optimization is one dimensional. All of the global optima share a single
objective function value, y∗. In multiobjective optimization, the criterion space is
m-dimensional, where m is the number of objectives. There is typically no globally
best objective function value because there may be ambiguity when tradeoffs
between objectives are not specified.

y∗

yY

y1

y2 Y

Single Objective Multiple Objectives Figure 12.2. The criterion space is
the set of all objective values ob-
tained by feasible design points.
Well-posed problems have crite-
rion spaces that are bounded from
below, but they do not have to be
bounded from above. The Pareto
frontier is highlighted in dark blue.

In multiobjective optimization, we can define the notion of Pareto optimality.
A design point x is Pareto-optimal when no point dominates it. That is, x ∈ X
is Pareto-optimal if there does not exist an x′ ∈ X such that x′ dominates x.
The set of Pareto-optimal points forms the Pareto frontier. The Pareto frontier is
valuable for helping decision-makers make design trade decisions as discussed in
example 12.1. In two dimensions, the Pareto frontier is also referred to as a Pareto
curve.

All Pareto-optimal points lie on the boundary of the criterion space. Somemulti-
objective optimization methods also find weakly Pareto-optimal points. Whereas
Pareto-optimal points are those such that no other point improves at least one ob-
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jective, weakly Pareto-optimal points are those such that no other point improves
all of the objectives (figure 12.3). That is, x ∈ X is weakly Pareto-optimal if there
does not exist an x′ ∈ X such that f(x′) < f(x). Pareto-optimal points are also
weakly Pareto optimal. Weakly Pareto-optimal points are not necessarily Pareto
optimal.

y1

y2

Figure 12.3. Weakly Pareto-
optimal points, shown in red,
cannot be improved simultane-
ously in all objectives.

Several methods discussed below use another special point. We define the
utopia point to be the point in the criterion space consisting of the component-wise
optima:

y
utopia
i = minimize

x∈X
fi(x) (12.2)

The utopia point is often not attainable; optimizing one component typically
requires a tradeoff in another component.

12.1.3 Pareto Frontier Generation
There are several methods for generating Pareto frontiers. A naive approach
is to sample design points throughout the design space and then to identify
the nondominated points (algorithm 12.2). This approach is typically wasteful,
leading tomany dominated design points as shown in figure 12.4. In addition, this
approach does not guarantee a smooth or correct Pareto frontier. The remainder
of this chapter discusses more effective ways to generate Pareto frontiers.
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When constructing a collision avoidance system for aircraft, one must mini-
mize both the collision rate and the alert rate. Althoughmore alerts can result
in preventing more collisions if the alerts are followed, too many alerts can
result in pilots losing trust in the system and lead to decreased compliance
with the system. Hence, the designers of the system must carefully trade
alerts and collision risk.

Ideal
Pareto Frontier

Pareto dominated points
(suboptimal)

criterion space
(denoted Y)

alert rate

co
lli
sio

n
ra
te

By varying the collision avoidance system’s design parameters, we can
obtain many different collision avoidance systems, but, as the figure shows,
some of these will be better than others. A Pareto frontier can be extracted
to help domain experts and regulators understand the effects that objective
tradeoffs will have on the optimized system.

Example 12.1. An approximate
Pareto frontier obtained from
evaluating many different design
points for an aircraft collision
avoidance system.
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function naive_pareto(xs, ys)
pareto_xs, pareto_ys = similar(xs, 0), similar(ys, 0)
for (x,y) in zip(xs,ys)

if !any(dominates(y′,y) for y′ in ys)
push!(pareto_xs, x)
push!(pareto_ys, y)

end
end
return (pareto_xs, pareto_ys)

end

Algorithm 12.2. A method for
generating a Pareto frontier using
randomly sampled design points
xs and their multiobjective values
ys. Both the Pareto-optimal design
points and their objective values
are returned.

y1

y2

Figure 12.4. Generating Pareto
frontiers with naively scattered
points is straightforward but ineffi-
cient and approximate.

12.2 Constraint Methods

Constraints can be used to cut out sections of the Pareto frontier and obtain a
single optimal point in the criterion space. Constraints can be supplied either
by the problem designer or automatically obtained based on an ordering of the
objectives.

12.2.1 Constraint Method
The constraint method constrains all but one of the objectives. Here we choose f1

without loss of generality:

minimize
x

f1(x)

subject to f2(x) ≤ c2

f3(x) ≤ c3

...
fm(x) ≤ cm

x ∈ X

(12.3)

Given the vector c, the constraint method produces a unique optimal point
in the criterion space, provided that the constraints are feasible. The constraint
method can be used to generate Pareto frontiers by varying c as shown in fig-
ure 12.5.
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y1

y2

Y

c2 large

c2 small

Figure 12.5. The constraint method
for generating a Pareto frontier.
This method can identify points in
the concave region of the Pareto
frontier.

12.2.2 Lexicographic Method
The lexicographic method ranks the objectives in order of importance. A series
of single-objective optimizations are performed on the objectives in order of
importance. Each optimization problem includes constraints to preserve the
optimality with respect to previously optimized objectives as shown in figure 12.6.

minimize
x

f1(x)

subject to x ∈ X

y∗1

minimize
x

f2(x)

subject to f1(x) ≤ y∗1
x ∈ X

y∗2

minimize
x

f3(x)

subject to f1(x) ≤ y∗1
f2(x) ≤ y∗2

x ∈ X

y∗3
Figure 12.6. The lexicographic
method for an optimization prob-
lem with three objectives.Iterations are always feasible because the minimum point from the previous

optimization is always feasible. The constraints could also be replaced with equal-
ities, but inequalities are often easier for optimizers to enforce. In addition, if the
optimization method used is not optimal, then subsequent optimizations may
encounter better solutions that would otherwise be rejected. The lexicographic
method is sensitive to the ordering of the objective functions.
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12.3 Weight Methods

A designer can sometimes identify preferences between the objectives and encode
these preferences as a vector of weights. In cases where the choice of weights is not
obvious, we can generate a Pareto frontier by sweeping over the space of weights.
This section also discusses a variety of alternative methods for transforming
multiobjective functions into single-objective functions.

12.3.1 Weighted Sum Method
The weighted sum method (algorithm 12.3) uses a vector of weights w to convert f

to a single objective f :2 2 L. Zadeh, ‘‘Optimality and Non-
Scalar-Valued Performance Crite-
ria,’’ IEEE Transactions on Automatic
Control, vol. 8, no. 1, pp. 59–60,
1963.

f (x) = w⊤f(x) (12.4)
where the weights are nonnegative and sum to 1. The weights can be interpreted
as costs associated with each objective. The Pareto frontier can be extracted by
varying w and solving the associated optimization problem with the objective in
equation (12.4). In two dimensions, we vary w1 from 0 to 1, setting w2 = 1− w1.
This approach is illustrated in figure 12.7.

y1

y2

Y

w1 = 1

w1 = 0

w1

w2

Figure 12.7. The weighted sum
method used to generate a Pareto
frontier. Varying the weights al-
lows us to trace the Pareto frontier.

In contrast with the constraint method, the weighted sum method cannot
obtain points in nonconvex regions of the Pareto frontier as shown in figure 12.8.

y1

y2

Figure 12.8. The points in red are
Pareto optimal but cannot be ob-
tained using the weighted sum
method.
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A given set of weights forms a linear objective function with parallel contour
lines marching away from the origin. If the feasible set bends away from the
origin, it will have other Pareto optimal points on the boundary that cannot be
recovered by minimizing equation (12.4).

function weight_pareto(f1, f2, npts)
return [

optimize(x->w1*f1(x) + (1-w1)*f2(x))
for w1 in range(0,stop=1,length=npts)

]
end

Algorithm 12.3. The weighted sum
method for generating a Pareto
frontier, which takes objective func-
tions f1 and f2 and number of
Pareto points npts.

12.3.2 Goal Programming
Goal programming3 is a method for converting a multiobjective function to a single- 3 Goal programming generally

refers to using p = 1. An overview
is presented in D. Jones and M.
Tamiz, Practical Goal Programming.
Springer, 2010.

objective function by minimizing an Lp norm between f(x) and a goal point:

minimize
x∈X

∥
∥
∥f(x)− ygoal

∥
∥
∥

p
(12.5)

where the goal point is typically the utopia point. The equation above does not
involve a vector of weights, but the other methods discussed in this chapter can be
thought of as generalizations of goal programming. This approach is illustrated
in figure 12.9.

12.3.3 Weighted Exponential Sum
The weighted exponential sum combines goal programming and the weighted sum
method4 4 P. L. Yu, ‘‘Cone Convexity, Cone

Extreme Points, and Nondomi-
nated Solutions in Decision Prob-
lems withMultiobjectives,’’ Journal
of Optimization Theory and Applica-
tions, vol. 14, no. 3, pp. 319–377,
1974.

f (x) =
m

∑
i=1

wi

(

fi(x)− y
goal
i

)p
(12.6)

where w is a vector of positive weights that sum to 1 and p ≥ 1 is an exponent
similar to that used in Lp norms. As before, zero-valued weights can result in
weakly Pareto-optimal points.
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y1

y2

ygoal

p = 1

p = 2

p = ∞

Figure 12.9. Solutions to goal pro-
gramming as the value for p is
changed.

Theweighted exponential sumweighs each component of the distance between
the solution point and the goal point in the criterion space. Increasing p increases
the relative penalty of the largest coordinate deviation between f(x) and the goal
point. While portions of the Pareto-optimal set can be obtained by continuously
varying p, we are not guaranteed to obtain the complete Pareto frontier, and it is
generally preferable to vary w using a constant p.

12.3.4 Weighted Min-Max Method
Using higher values of p with the weighted exponential sum objective tends
to produce better coverage of the Pareto frontier because the distance contours
are able to enter nonconvex regions of the Pareto frontier. The weighted min-max
method, also called the weighted Tchebycheff method, is the limit as p approaches
infinity:5 5 The maximization can be re-

moved by including an additional
parameter λ:

minimize
x,λ

λ

subject to x ∈ X

w⊙
(

f(x)− ygoal
)

− λ1 ≤ 0

f (x) = max
i

[

wi

(

fi(x)− y
goal
i

)]

(12.7)

The weighted min-max method can provide the complete Pareto-optimal set
by scanning over the weights but will also produce weakly Pareto-optimal points.
The method can be augmented to produce only the Pareto frontier

f (x) = max
i

[

wi

(

fi(x)− y
goal
i

)]

+ ρ f(x)⊤ygoal (12.8)
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where ρ is a small positive scalar with values typically between 0.0001 and 0.01.
The added term requires that all terms in ygoal be positive, which can be ac-
complished by shifting the objective function. By definition, f(x) ≥ ygoal for all
x. Any weakly Pareto-optimal point will have f(x)⊤ygoal larger than a strongly
Pareto-optimal point closer to ygoal.

12.3.5 Exponential Weighted Criterion
The exponential weighted criterion6 was motivated by the inability of the weighted 6 T.W. Athan and P.Y. Papalam-

bros, ‘‘A Note on Weighted Crite-
ria Methods for Compromise So-
lutions in Multi-Objective Opti-
mization,’’ Engineering Optimiza-
tion, vol. 27, no. 2, pp. 155–176,
1996.

sum method to obtain points on nonconvex portions of the Pareto frontier. It
constructs a scalar objective function according to

f (x) =
m

∑
i=1

(epwi − 1)ep fi(x) (12.9)

Each objective is individually transformed and reweighted. High values of p can
lead to numerical overflow.

12.4 Multiobjective Population Methods

Population methods have also been applied to multiobjective optimization.7 We 7 Population methods are covered
in chapter 9.can adapt the standard algorithms to encourage populations to spread over the

Pareto frontier.

12.4.1 Subpopulations
Population methods can divide their attention over several potentially competing
objectives. The population can be partitioned into subpopulations, where each
subpopulation is optimized with respect to different objectives. A traditional
genetic algorithm, for example, can bemodified to bias the selection of individuals
for recombination toward the fittest individuals within each subpopulation. Those
selected can form offspring with individuals from different subpopulations.

One of the first adaptations of population methods to multiobjective optimiza-
tion is the vector evaluated genetic algorithm8 (algorithm 12.4). Figure 12.10 shows 8 J. D. Schaffer, ‘‘Multiple Objective

Optimization with Vector Evalu-
ated Genetic Algorithms,’’ in Inter-
national Conference on Genetic Algo-
rithms and Their Applications, 1985.

how subpopulations are used in a vector-evaluated genetic algorithm to maintain
diversity over multiple objectives. The progression of a vector evaluated genetic
algorithm is shown in figure 12.11.
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1

2

...

m

select m sub-
populations

shuffle crossover and
mutation

population subpopulations parent pairs new population Figure 12.10. Using subpopula-
tions in a vector evaluated genetic
algorithm.

function vector_evaluated_genetic_algorithm(f, population,
k_max, S, C, M)
m = length(f(population[1]))
m_pop = length(population)
m_subpop = m_pop ÷ m
for k in 1 : k_max

ys = f.(population)
parents = select(S, [y[1] for y in ys])[1:m_subpop]
for i in 2 : m

subpop = select(S,[y[i] for y in ys])[1:m_subpop]
append!(parents, subpop)

end

p = randperm(2m_pop)
p_ind=i->parents[mod(p[i]-1,m_pop)+1][(p[i]-1)÷m_pop + 1]
parents = [[p_ind(i), p_ind(i+1)] for i in 1 : 2 : 2m_pop]
children = [crossover(C,population[p[1]],population[p[2]])

for p in parents]
population = [mutate(M, c) for c in children]

end
return population

end

Algorithm 12.4. The vector
evaluated genetic algorithm,
which takes a vector-valued
objective function f, an initial
population, number of iterations
k_max, a SelectionMethod S,
a CrossoverMethod C, and a
MutationMethod M. The resulting
population is returned.
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Figure 12.11. A vector evalu-
ated genetic algorithm applied to
the circle function defined in ap-
pendix B.8. The Pareto frontier is
shown in blue.

12.4.2 Nondomination Ranking
One can compute naive Pareto frontiers using the individuals in a population.
A design point that lies on the approximate Pareto frontier is considered better
than a value deep within the criterion space. We can use nondomination ranking
(algorithm 12.5) to rank individuals according to the following levels:9 9 K. Deb, A. Pratap, S. Agarwal,

and T. Meyarivan, ‘‘A Fast and Eli-
tist Multiobjective Genetic Algo-
rithm: NSGA-II,’’ IEEE Transactions
on Evolutionary Computation, vol. 6,
no. 2, pp. 182–197, 2002.

Level 1. Nondominated individuals in the population.

Level 2. Nondominated individuals except those in Level 1.

Level 3. Nondominated individuals except those in Levels 1 or 2.

. ...

Level k. Nondominated individuals except those in Levels 1 to k− 1.

Level 1 is obtained by applying algorithm 12.2 to the population. Subsequent
levels are generated by removing all previous levels from the population and
then applying algorithm 12.2 again. This process is repeated until all individuals
have been ranked. An individual’s objective function value is proportional to its
rank.

The nondomination levels for an example population are shown in figure 12.12.
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function get_non_domination_levels(ys)
L, m = 0, length(ys)
levels = zeros(Int, m)
while minimum(levels) == 0

L += 1
for (i,y) in enumerate(ys)

if levels[i] == 0 &&
!any((levels[i] == 0 || levels[i] == L) &&

dominates(ys[i],y) for i in 1 : m)
levels[i] = L

end
end

end
return levels

end

Algorithm 12.5. A function for get-
ting the nondomination levels of
an array of multiobjective function
evaluations, ys.

Level 1
Level 2

Level 10

y1

y2 Figure 12.12. The nondomination
levels for a population. Darker lev-
els have lower (better) rankings.
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12.4.3 Pareto Filters
Population methods can be augmented with a Pareto filter, which is a population
that approximates the Pareto frontier.10 The filter is typically updated with every 10 H. Ishibuchi and T. Murata,

‘‘A Multi-Objective Genetic Local
Search Algorithm and Its Appli-
cation to Flowshop Scheduling,’’
IEEE Transactions on Systems, Man,
and Cybernetics, vol. 28, no. 3,
pp. 392–403, 1998.

generation (algorithm 12.7). Individuals in the population that are not dominated
by any individuals in the filter are added. Any dominated points in the filter are
removed. Individuals from the Pareto filter can be injected into the population,
thereby reducing the chance that portions of the Pareto frontier are lost between
generations.

The filter often has a maximum capacity.11 Filters that are overcapacity can be 11 Typically the size of the popula-
tion.reduced by finding the closest pair of design points in the criterion space and

removing one individual from that pair. This pruning method is implemented
in algorithm 12.6. A Pareto filter obtained using a genetic algorithm is shown in
figure 12.13.

function discard_closest_pair!(xs, ys)
index, min_dist = 0, Inf
for (i,y) in enumerate(ys)

for (j, y′) in enumerate(ys[i+1:end])
dist = norm(y - y′)
if dist < min_dist

index, min_dist = rand([i,j]), dist
end

end
end
deleteat!(xs, index)
deleteat!(ys, index)
return (xs, ys)

end

Algorithm 12.6. The method
discard_closest_pair! is used to
remove one individual from a fil-
ter that is above capacity. The
method takes the filter’s list of de-
sign points xs and associated ob-
jective function values ys.



226 chapter 12. multiobjective optimization

function update_pareto_filter!(filter_xs, filter_ys, xs, ys;
capacity=length(xs),
)
for (x,y) in zip(xs, ys)

if !any(dominates(y′,y) for y′ in filter_ys)
push!(filter_xs, x)
push!(filter_ys, y)

end
end
filter_xs, filter_ys = naive_pareto(filter_xs, filter_ys)
while length(filter_xs) > capacity

discard_closest_pair!(filter_xs, filter_ys)
end
return (filter_xs, filter_ys)

end

Algorithm 12.7. A method for
updating a Pareto filter with
design points filter_xs, corre-
sponding objective function values
filter_ys, a population with
design points xs and objective
function values ys, and filter
capacity capacity which defaults
to the population size.

0 0.5 1 1.5
0

0.5

1

1.5

y1

y
2

Figure 12.13. A Pareto filter used
on the genetic algorithm in fig-
ure 12.11 to approximate the Pareto
frontier.
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12.4.4 Niche Techniques

y1

y2

Figure 12.14. Two clear niches for
a population in a two-dimensional
criterion space.

The term niche refers to a focused cluster of points, typically in the criterion space,
as shown in figure 12.14. Populationmethods can converge on a few niches, which
limits their spread over the Pareto frontier. Niche techniques help encourage an
even spread of points.

In fitness sharing,12 shown in figure 12.15, an individual’s objective values are

12 Fitness is inversely related to the
objective being minimized.

penalized by a factor equal to the number of other points within a specified
distance in the criterion space.13 This scheme causes all points in a local region to

13 D. E. Goldberg and J. Richardson,
‘‘Genetic Algorithms with Sharing
forMultimodal FunctionOptimiza-
tion,’’ in International Conference on
Genetic Algorithms, 1987.

share the fitness of the other points within the local region. Fitness sharing can
be used together with nondomination ranking and subpopulation evaluation.

Equivalence class sharing can be applied to nondomination ranking. When com-
paring two individuals, the fitter individual is first determined based on the
nondomination ranking. If they are equal, the better individual is the one with
the fewest number of individuals within a specified distance in the criterion space.

Another niche technique has been proposed for genetic algorithms in which
parents selected for crossover cannot be too close together in the criterion space.
Selecting only nondominated individuals is also recommended.14 14 S. Narayanan and S. Azarm,

‘‘On Improving Multiobjective Ge-
netic Algorithms for Design Opti-
mization,’’ Structural Optimization,
vol. 18, no. 2-3, pp. 146–155, 1999.
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Figure 12.15. The results of apply-
ing fitness sharing to the Pareto fil-
ter in figure 12.13, thereby signifi-
cantly improving its coverage.
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12.5 Preference Elicitation

Preference elicitation involves inferring a scalar-valued objective function from
preferences of experts about the tradeoffs between objectives.15 There are many 15 This chapter overviews non-

Bayesian approaches to preference
elicitation. For Bayesian ap-
proaches, see: S. Guo and S.
Sanner, ‘‘Real-Time Multiattribute
Bayesian Preference Elicitation
with Pairwise Comparison
Queries,’’ in International Con-
ference on Artificial Intelligence
and Statistics (AISTATS), 2010.
J. R. Lepird, M. P. Owen, and
M. J. Kochenderfer, ‘‘Bayesian
Preference Elicitation for Multi-
objective Engineering Design
Optimization,’’ Journal of Aerospace
Information Systems, vol. 12, no. 10,
pp. 634–645, 2015.

different ways to represent the scalar-valued objective function, but this section
will focus on the weighted sum model where f (x) = w⊤f(x). Once we identify
a suitable w, we can use this scalar-valued objective function to find an optimal
design.

12.5.1 Model Identification
A common approach for identifying the weight vector w in our preference model
involves asking experts to state their preference between two points a and b in the
criterion space Y (figure 12.16). Each of these points is the result of optimizing
for a point on the Pareto frontier using an associated weight vector wa and wb.
The expert’s response is either a preference for a or a preference for b. There are
other schemes for eliciting preference information, such as ranking points in the
criterion space, but this binary preference query has been shown to pose minimal
cognitive burden on the expert.16

16 V. Conitzer, ‘‘Eliciting Single-
Peaked Preferences Using Com-
parison Queries,’’ Journal of Arti-
ficial Intelligence Research, vol. 35,
pp. 161–191, 2009.

y1 y2 y3 y4 y5

a

y1 y2 y3 y4 y5

b

Figure 12.16. Preference elicita-
tion schemes often involve asking
experts their preferences between
two points in the criterion space.

Suppose the outcomes of the expert queries have resulted in a set of criterion
pairs

{

(a(1), b(1)), . . . , (a(n), b(n))
}

(12.10)

where a(i) is preferable to b(i) in each pair. For each of these preferences, the
weight vector must satisfy

w⊤a(i) < w⊤b(i) =⇒ (a(i) − b(i))⊤w < 0 (12.11)
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In order to be consistent with the data, the weight vector must satisfy






(a(i) − b(i))⊤w < 0 for all i in {1, . . . , n}
1⊤w = 1

w ≥ 0

(12.12)

Many different weight vectors could potentially satisfy the above equation.
One approach is to choose a w that best separates w⊤a(i) from w⊤b(i)

minimize
w

n

∑
i=1

(a(i) − b(i))⊤w

subject to (a(i) − b(i))⊤w < 0 for i ∈ {1, . . . , n}
1⊤w = 1 w ≥ 0

(12.13)

It is often desirable to choose the next weight vector such that it minimizes the
distance from the previous weight vector. We can replace the objective function in
equation (12.13) with ‖w−w(n)‖1, thereby ensuring that our new weight vector
w(n+1) is as close as possible to our current one.17 17 The previous weight vector

may or may not be consistent
with the added constraint
(a(n) − b(n))⊤w < 0.12.5.2 Paired Query Selection

We generally want to choose the two points in the criterion space so that the
outcome of the query is as informative as possible. There are many different
approaches for such paired query selection, but we will focus on methods that
attempt to reduce the space of weights consistent with expert responses, preference
information supplied by a domain expert.

We will denote the set of weights consistent with expert responses as W ,
which is defined by the linear constraints in equation (12.12). Because weights
are bounded between 0 and 1, the feasible set is an enclosed region forming a
convex polytope with finite volume. We generally want to reduce the volume of
W in as few queries as possible.

Q-Eval18, shown in figure 12.17, is a greedy elicitation strategy that heuristically 18 V. S. Iyengar, J. Lee, and M.
Campbell, ‘‘Q-EVAL: Evaluating
Multiple Attribute Items Using
Queries,’’ in ACM Conference on
Electronic Commerce, 2001.

seeks to reduce the volume ofW as quickly as possible with each iteration. It
chooses the query that comes closest to bisectingW into two equal parts. The
method operates on a finite sampling of Pareto-optimal design points. The proce-
dure for choosing a query pair is:
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1. Compute the prime analytic center c ofW , which is the point that maximizes
the sum of the logarithms of the distances between itself and the closest point
on each nonredundant constraint inW :

c = arg max
w∈W

n

∑
i=1

ln
(

(b(i) − a(i))⊤w
)

(12.14)

2. Compute the normal distance from the bisecting hyperplane between each
pair of points and the center.

3. Sort the design-point pairs in order of increasing distance.

4. For each of the k hyperplanes closest to c, compute the volume ratio of the two
polytopes formed by splittingW along the hyperplane.

5. Choose the design-point pair with split ratio closest to 1.

w1

w2

W

w1

w2

cwa wb

w1

w2

Set of Consistent WeightsW Analytic Center and Bisecting Hyperplane Two Regions under Query a vs. b

Figure 12.17. Visualizations of the
Q-Eval greedy elicitation strategy.
The figure progression shows the
initial set of weightsW consistent
with previous preferences, a pair
of weight vectors and their cor-
responding bisecting hyperplane,
and the two polytopes formed by
splitting along the bisecting hy-
perplane. The algorithm consid-
ers all possible pairs from a finite
sampling of Pareto-optimal design
points and chooses the query that
most evenly splitsW .

The polyhedral method19 works by approximatingW with a bounding ellipsoid

19 D. Braziunas and C. Boutilier,
‘‘Elicitation of Factored Utilities,’’
AI Magazine, vol. 29, no. 4, pp. 79–
92, 2009.

centered at the analytic center ofW as shown in figure 12.18. Queries are designed
to partition the bounding ellipsoid into approximately equal parts and to favor
cuts that are perpendicular to the longest axis of the ellipsoid to reduce both
uncertainty and to balance the breadth in each dimension.

12.5.3 Design Selection
The previous section discussed query methods that select query pairs for effi-
ciently reducing the search space. After query selection is complete, one must
still select a final design. This process is known as design selection.
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w1

w2

wa

wb Figure 12.18. The polyhedral
method uses a bounding ellipsoid
forW .

One such method, decision quality improvement,20 is based on the idea that if 20 D. Braziunas and C. Boutilier,
‘‘Minimax Regret-Based Elicitation
of Generalized Additive Utilities,’’
in Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 2007.

we have to commit to a particular weight, we should commit to the one for which
the worst-case objective value is lowest:

x∗ = arg min
x∈X

max
w∈W

w⊤f(x) (12.15)

Thisminimax decision is robust because it provides an upper bound on the objective
value.

The minimax regret21 instead minimizes the maximum amount of regret the 21 C. Boutilier, R. Patrascu, P.
Poupart, and D. Schuurmans,
‘‘Constraint-Based Optimization
and Utility Elicitation Using the
Minimax Decision Criterion,’’
Artificial Intelligence, vol. 170,
no. 8-9, pp. 686–713, 2006.

user can have when selecting a particular design:

x∗ = arg min
x∈X

max
w∈W

max
x′∈X

w⊤f(x)−w⊤f(x′)
︸ ︷︷ ︸

maximum regret

(12.16)

where w⊤f(x)−w⊤f(x′) is the regret associated with choosing design x instead
of design x′ under the preference weight vector w. Minimax regret can be viewed
as accounting for the decision system’s uncertainty with respect to the designer’s
true utility function.

The minimax regret can be used as stopping criteria for preference elicitation
strategies.We can terminate the preference elicitation procedure once theminimax
regret drops below a certain threshold.
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12.6 Summary

• Design problems with multiple objectives often involve trading performance
between different objectives.

• The Pareto frontier represents the set of potentially optimal solutions.

• Vector-valued objective functions can be converted to scalar-valued objective
functions using constraint-based or weight-based methods.

• Population methods can be extended to produce individuals that span the
Pareto frontier.

• Knowing the preferences of experts between pairs of points in the criterion
space can help guide the inference of a scalar-valued objective function.

12.7 Exercises

Exercise 12.1. The weighted sum method is a very simple approach, and it is in-
deed used by engineers for multiobjective optimization.What is one disadvantage
of the procedure when it is used to compute the Pareto frontier?

Exercise 12.2. Why are population methods well-suited for multiobjective opti-
mization?

Exercise 12.3. Suppose you have the points {[1, 2], [2, 1], [2, 2], [1, 1]} in the crite-
rion space and you wish to approximate a Pareto frontier. Which points are Pareto
optimal with respect to the rest of the points? Are any weakly Pareto-optimal
points?

Exercise 12.4. Multiobjective optimization is not easily done with second-order
methods. Why is this the case?

Exercise 12.5. Consider a square criterion space Y with y1 ∈ [0, 1] and y2 ∈ [0, 1].
Plot the criterion space, indicate the Pareto-optimal points, and indicate theweakly
Pareto optimal points.

Exercise 12.6. Enforcing w ≥ 0 and ‖w‖1 = 1 in the weighted sum method
is not sufficient for Pareto optimality. Give an example where coordinates with
zero-valued weights find weakly Pareto-optimal points.
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Exercise 12.7. Provide an example where goal programming does not produce a
Pareto-optimal point.

Exercise 12.8. Use the constraint method to obtain the Pareto curve for the opti-
mization problem:

minimize
x

[x2, (x− 2)2] (12.17)

Exercise 12.9. Suppose we have a multiobjective optimization problem where
the two objectives are as follows:

f1(x) = −(x− 2) sin(x) (12.18)
f2(x) = −(x + 3)2 sin(x) (12.19)

With x ∈ {−5,−3,−1, 1, 3, 5}, plot the points in the criterion space. How many
points are on the Pareto frontier?





13 Sampling Plans

For many optimization problems, function evaluations can be quite expensive.
For example, evaluating a hardware design may require a lengthy fabrication
process, an aircraft design may require a wind tunnel test, and new deep learning
hyperparameters may require a week of GPU training. A common approach for
optimizing in contexts where evaluating design points is expensive is to build a
surrogate model, which is amodel of the optimization problem that can be efficiently
optimized in lieu of the true objective function. Further evaluations of the true
objective function can be used to improve the model. Fitting such models requires
an initial set of points, ideally points that are space-filling; that is, points that cover
the region as well as possible. This chapter covers different sampling plans for
covering the search space when we have limited resources.1 1 There are other references that

discuss the topics in this chapter
in greater detail. See, for example:
G. E. P. Box, W.G. Hunter, and J. S.
Hunter, Statistics for Experimenters:
An Introduction to Design, Data Anal-
ysis, andModel Building, 2nd ed.Wi-
ley, 2005. A. Dean, D. Voss, and
D. Draguljić, Design and Analysis
of Experiments, 2nd ed. Springer,
2017. D.C. Montgomery, Design
and Analysis of Experiments. Wiley,
2017.

13.1 Full Factorial

The full factorial sampling plan (algorithm 13.1) places a grid of evenly spaced
points over the search space. This approach is easy to implement, does not rely
on randomness, and covers the space, but it uses a large number of points. A grid
of evenly spaced points is spread over the search space as shown in figure 13.1.
Optimization over the points in a full factorial sampling plan is referred to as grid
search.

The sampling grid is defined by a lower-bound vector a and an upper-bound
vector b such that ai ≤ xi ≤ bi for each component i. For a grid with mi

samples in the ith dimension, the nearest points are separated by a distance
(bi − ai)/(mi − 1).

The full factorial method requires a sample count exponential in the number
of dimensions.2 For n dimensions with m samples per dimension, we have mn

2 The full factorial method gets its
name not from a factorial sample
count (it is exponential) but from
designingwith two ormore discrete
factors. Here the factors are the m
discretized levels associated with
each variable.
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a1 b1

a2

b2

x1

x
2

b2−a2
m2−1

b1−a1
m1−1

Figure 13.1. Full factorial search
covers the search space in a grid of
points.

total samples. This exponential growth is far too high to be of practical use when
there are more than a few variables. Even when full factorial sampling is able to
be used, the grid points are generally forced to be quite coarse and therefore can
easily miss small, local features of the optimization landscape.

function samples_full_factorial(a, b, m)
ranges = [range(a[i], stop=b[i], length=m[i])

for i in 1 : length(a)]
collect.(collect(product(ranges...)))

end

Algorithm 13.1. A function for ob-
taining all sample locations for the
full factorial grid. Here, a is a vec-
tor of variable lower bounds, b is
a vector of variable upper bounds,
and m is a vector of sample counts
for each dimension.

13.2 Random Sampling

A straightforward alternative to full factorial sampling is random sampling, which
simply draws m random samples over the design space using a pseudorandom
number generator. To generate a random sample x, we can sample each variable
independently from a distribution. If we have bounds on the variables, such as
ai ≤ xi ≤ bi, a common approach is to use a uniform distribution over [ai, bi],
although other distributions may be used. For some variables, it may make sense
to use a log-uniform distribution.3 The samples of design points are uncorrelated 3 Some parameters, such as the

learning rate for deep neural net-
works, are best searched in log-
space.

with each other. The hope is that the randomness, on its own, will result in an
adequate cover of the design space.
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13.3 Uniform Projection Plans

Suppose we have a two-dimensional optimization problem discretized into an
m×m sampling grid as with the full factorial method, but, instead of taking all
m2 samples, we want to sample only m positions. We could choose the samples
at random, but not all arrangements are equally useful. We want the samples to
be spread across the space, and we want the samples to be spread across each
individual component.

too clustered
no variation in
one component uniform projection

Figure 13.2. Several ways to choose
m samples from a two-dimensional
grid. We generally prefer sampling
plans that cover the space and vary
across each component.

A uniform projection plan is a sampling plan over a discrete grid where the dis-
tribution over each dimension is uniform. For example, in the rightmost sampling
plan in figure 13.2, each row has exactly one entry and each column has exactly
one entry.

A uniform projection planwith m samples on an m×m grid can be constructed
using an m-element permutation as shown in figure 13.3. There are therefore m!

possible uniform projection plans.4

4 For m = 5 this is already 5! = 120
possible plans. For m = 10 there
are 3,628,800 plans.

1 2 3 4 5

1

2

3

4

5

p = 4 2 1 3 5

Figure 13.3. Constructing a uni-
form projection plan using a per-
mutation.
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Sampling with uniform projection plans is sometimes called Latin-hypercube
sampling because of the connection to Latin squares (figure 13.4). A Latin square
is an m× m grid where each row contains each integer 1 through m and each
column contains each integer 1 through m. Latin-hypercubes are a generalization
to any number of dimensions.

2 3 4 1

3 2 1 4

1 4 2 3

4 1 3 2

Figure 13.4. A 4× 4 Latin square.
A uniform projection plan can be
constructed by choosing a value
i ∈ {1, 2, 3, 4} and sampling all
cells with that value.

Uniform projection plans for n dimensions can be constructed using a permu-
tation for each dimension (algorithm 13.2).

function uniform_projection_plan(m, n)
perms = [randperm(m) for i in 1 : n]
[[perms[i][j] for i in 1 : n] for j in 1 : m]

end

Algorithm 13.2. A function for con-
structing a uniform projection plan
for an n-dimensional hypercube
with m samples per dimension. It
returns a vector of index vectors.

13.4 Stratified Sampling

Many sampling plans, including uniform projection and full factorial plans, are
based on an m×m grid. Such a grid, even if fully sampled, could miss important
information due to systematic regularities as shown in figure 13.5. One method
for providing an opportunity to hit every point is to use stratified sampling.

Stratified sampling modifies any grid-based sampling plan, including full
factorial and uniform projection plans. Cells are sampled at a point chosen uni-
formly at random from within the cell rather than at the cell’s center as shown in
figure 13.6. x

y
f (x)

sampling on grid
stratified sampling

Figure 13.5. Using an evenly-
spaced grid on a function with sys-
tematic regularities can miss im-
portant information.

Figure 13.6. Stratified sampling ap-
plied to a uniform projection plan.
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13.5 Space-Filling Metrics

A good sampling plan fills the design space since the ability for a surrogate model
to generalize from samples decays with the distance from those samples. Not
all plans, even uniform projection plans, are equally good at covering the search
space. For example, a grid diagonal (figure 13.7) is a uniform projection plan but
only covers a narrow strip. This section discusses different space-filling metrics for
measuring the degree to which a sampling plan X ⊆ X fills the design space.

Figure 13.7. A uniform projection
plan that is not space-filling.

13.5.1 Discrepancy
The ability of the sampling plan to fill a hyper-rectangular design space can be
measured by its discrepancy.5 If X has low discrepancy, then a randomly chosen

5 L. Kuipers and H. Niederreiter,
Uniform Distribution of Sequences.
Dover, 2012.

subset of the design space should contain a fraction of samples proportional to the
subset’s volume.6 The discrepancy associated with X is the maximum difference

6 In arbitrary dimensions, we can
use the Lebesgue measure, which
is a generalization of volume to
any subset of n-dimensional Eu-
clidean space. It is length in one-
dimensional space, area in two-
dimensional space, and volume in
three-dimensional space.

between the fraction of samples in a hyper-rectangular subsetH and that subset’s
volume:

d(X) = supremum
H

∣
∣
∣
∣

#(X
⋂H)

#X
− λ(H)

∣
∣
∣
∣

(13.1)

where #X and #(X
⋂H) are the number of points in X and the number of points

in X that lie in H, respectively. The value λ(H) is the n-dimensional volume
of H, the product of the side lengths of H. The term supremum is very similar
to maximization but allows a solution to exist for problems where H merely
approaches a particular rectangular subset, as seen in example 13.1.7 7 The definition of discrepancy re-

quires hyper-rectangles and typi-
cally assumes that X is a finite sub-
set of a unit hypercube. The notion
of discrepancy can be extended to
allowH to include other sets, such
as convex polytopes.

Computing the discrepancy of a sampling plan over the unit hyper-rectangle
is often difficult, and it is not always clear how we can compute the discrepancy
for nonrectangular feasible sets.

13.5.2 Pairwise Distances
An alternative method determining which of two m-point sampling plans is more
space-filling is to compare the pairwise distances between all points within each
sampling plan. Sampling plans that are more spread out will tend to have larger
pairwise distances.

The comparison is typically done by sorting each set’s pairwise distances in
ascending order. The plan with the first pairwise distance that exceeds the other
is considered more space-filling.
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Consider the set:

X =

{[
1

5
,

1

5

]

,

[
2

5
,

1

5

]

,

[
1

10
,

3

5

]

,

[
9

10
,

3

10

]

,

[
1

50
,

1

50

]

,

[
3

5
,

4

5

]}

The discrepancy of X with respect to the unit square is determined by a
rectangular subsetH that either has very small area but contains very many
points or has very large area and contains very few points.

0 1
0

1

x1

x
2

The blue rectangle, x1 ∈
[

1
10 , 2

5

]

, x2 ∈
[

1
5 , 3

5

]

, has a volume of 0.12 and
contains 3 points. Its corresponding discrepancy measure is thus 0.38.

The purple rectangle, x1 ∈
[

1
10 + ǫ, 9

10 − ǫ
]

, x2 ∈
[

1
5 + ǫ, 4

5 − ǫ
]

, produces
an even higher discrepancy. As ǫ approaches zero, the volume and the dis-
crepancy approach 0.48 because the rectangle contains no points. Note that
the limit was required, reflecting the need to use a supremum in the definition
of discrepancy.

Example 13.1. Computing the dis-
crepancy for a sampling plan over
the unit square. The sizes of the
rectangles are slightly exaggerated
to clearly show which points they
contain.
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Algorithm 13.3 computes all pairwise distances between points in a sampling
plan. Algorithm 13.4 compares how well two sampling plans fill space using their
respective pairwise distances.

import LinearAlgebra: norm
function pairwise_distances(X, p=2)

m = length(X)
[norm(X[i]-X[j], p) for i in 1:(m-1) for j in (i+1):m]

end

Algorithm 13.3. A function for
obtaining the list of pairwise dis-
tances between points in sampling
plan X using the Lp norm specified
by p.

function compare_sampling_plans(A, B, p=2)
pA = sort(pairwise_distances(A, p))
pB = sort(pairwise_distances(B, p))
for (dA, dB) in zip(pA, pB)

if dA < dB
return 1

elseif dA > dB
return -1

end
end
return 0

end

Algorithm 13.4. A function for
comparing the degree towhich two
sampling plans A and B are space-
filling using the Lp norm specified
by p. The function returns -1 if A is
more space-filling than B. It returns
1 if B is more space-filling than A. It
returns 0 if they are equivalent.

Onemethod for generating a space-filling uniformprojection plan is to generate
several candidates at random and then use the one that is most space-filling.

We can search for a space-filling uniform projection plan by repeatedly mu-
tating a uniform projection plan in a way that preserves the uniform projection
property (algorithm 13.5). Simulated annealing, for example, could be used to
search the space for a sampling plan with good coverage.

function mutate!(X)
m, n = length(X), length(X[1])
j = rand(1:n)
i = randperm(m)[1:2]
X[i[1]][j], X[i[2]][j] = X[i[2]][j], X[i[1]][j]
return X

end

Algorithm 13.5. A function for mu-
tating uniform projection plan X,
while maintaining its uniform pro-
jection property.
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13.5.3 Morris-Mitchell Criterion
The comparison scheme in section 13.5.2 typically results in a challenging opti-
mization problem with many local minima. An alternative is to optimize with
respect to the Morris-Mitchell criterion (algorithm 13.6):8 8 M.D. Morris and T. J. Mitchell,

‘‘Exploratory Designs for Compu-
tational Experiments,’’ Journal of
Statistical Planning and Inference,
vol. 43, no. 3, pp. 381–402, 1995.Φq(X) =

(

∑
i

d
−q
i

)1/q

(13.2)

where di is the ith pairwise distance between points in X and q > 0 is a tunable
parameter.9 Morris and Mitchell recommend optimizing: 9 Larger values of q will give higher

penalties to large distances.
minimize

X
maximize

q∈{1,2,3,10,20,50,100}
Φq(X) (13.3)

function phiq(X, q=1, p=2)
dists = pairwise_distances(X, p)
return sum(dists.^(-q))^(1/q)

end

Algorithm 13.6. An implemen-
tation of the Morris-Mitchell cri-
terion which takes a list of de-
sign points X, the criterion param-
eter q > 0, and a norm parameter
p ≥ 1.

Figure 13.8 shows the Morris-Mitchell criterion evaluated for several randomly
generated uniform projection plans.
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Φ1 = 22.9 Φ1 = 23.8 Φ1 = 23.8 Φ1 = 23.9 Φ1 = 24.0 Φ1 = 24.1

Φ1 = 24.1 Φ1 = 24.5 Φ1 = 24.7 Φ1 = 25.7 Φ1 = 25.7 Φ1 = 26.2

Φ1 = 26.3 Φ1 = 26.3 Φ1 = 29.1 Φ1 = 30.0 Φ1 = 32.6 Φ1 = 36.7

Figure 13.8. Uniform projection
plans sorted from best to worst ac-
cording to Φ1.
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13.6 Space-Filling Subsets

In some cases, we have a set of points X and want to find a subset of points
S ⊂ X that still maximally fills X. The need for identifying space-filling subsets of
X arises in the context of multifidelity models.10 For example, suppose we used a 10 A. I. J. Forrester, A. Sóbester, and

A. J. Keane, ‘‘Multi-Fidelity Op-
timization via Surrogate Mod-
elling,’’ Proceedings of the Royal
Society of London A: Mathematical,
Physical and Engineering Sciences,
vol. 463, no. 2088, pp. 3251–3269,
2007.

sampling plan X to identify a variety of aircraft wing designs to evaluate using
computational fluid dynamic models in simulation. We can choose only a subset
of these design points S to build and test in a wind tunnel. We still want S to be
space filling.

The degree to which S fills the design space can be quantified using the max-
imum distance between a point in X and the closest point in S. This metric
generalizes to any two finite sets A and B (algorithm 13.7). We can use any Lp

norm, but we typically use L2, the Euclidean distance:

dmax(X, S) = maximize
x∈X

minimize
s∈S

‖s− x‖p (13.4)

min_dist(a, B, p) = minimum(norm(a-b, p) for b in B)
d_max(A, B, p=2) = maximum(min_dist(a, B, p) for a in A)

Algorithm 13.7. The set Lp distance
metrics between two discrete sets,
where A and B are lists of design
points and p is the Lp norm param-
eter.A space-filling sampling plan is one that minimizes this metric.11 Finding a
11 We can also minimize the Morris-
Mitchell criterion for S.space-filling sampling plan with m elements is an optimization problem

minimize
S

dmax(X, S)

subject to S ⊆ X

#S = m

(13.5)

Optimizing equation (13.5) is typically computationally intractable. A brute
force approachwould try all d!/m!(d−m)! size-m subsets for a dataset of d design
points. Both greedy local search (algorithm 13.8) and the exchange algorithm (algo-
rithm 13.9) are heuristic strategies for overcoming this difficulty. They typically
find acceptable space-filling subsets of X.

Greedy local search starts with a point selected randomly from X and incre-
mentally adds the next best point that minimizes the distance metric. Points are
added until the desired number of points is reached. Because the points are ini-
tialized randomly, the best results are obtained by running greedy local search
several times and keeping the best sampling plan (algorithm 13.10).
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function greedy_local_search(X, m, d=d_max)
S = [X[rand(1:m)]]
for i in 2 : m

j = argmin([x ∈ S ? Inf : d(X, push!(copy(S), x))
for x in X])

push!(S, X[j])
end
return S

end

Algorithm 13.8. Greedy local
search, for finding m-element sam-
pling plans that minimize a dis-
tance metric d for discrete set X.

The exchange algorithm initializes S to a random subset of X and repeatedly
replaces points that are in S with a different point in X that is not already in S

to improve on the distance metric. The exchange algorithm is also typically run
multiple times.

Figure 13.9 compares space-filling subsets obtained using greedy local search
and the exchange algorithm.

13.7 Quasi-Random Sequences

Quasi-random sequences,12 also called low-discrepancy sequences, are often used in 12 C. Lemieux, Monte Carlo and
Quasi-Monte Carlo Sampling.
Springer, 2009.the context of trying to approximate an integral over a multidimensional space:

∫

X
f (x) dx ≈ v

m

m

∑
i=1

f (x(i)) (13.6)

where each x(i) is sampled uniformly at random over the domain X and v is the
volume of X . This approximation is known as Monte Carlo integration.

Rather than relying on random or pseudorandom numbers to generate inte-
gration points, quasi-random sequences are deterministic sequences that fill the
space in a systematic manner so that the integral converges as fast as possible in
the number of points m.13 These quasi-Monte Carlo methods have an error conver-

13 Pseudorandom number se-
quences, such as those produced
by a sequence of calls to rand, are
deterministic given a particular
seed, but they appear random.
Quasi-random numbers are also
deterministic but do not appear
random.gence of O(1/m) as opposed to O(1/

√
m) for typical Monte Carlo integration, as

shown in figure 13.10.
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function exchange_algorithm(X, m, d=d_max)
S = X[randperm(m)]
δ, done = d(X, S), false
while !done

best_pair = (0,0)
for i in 1 : m

s = S[i]
for (j,x) in enumerate(X)

if !in(x, S)
S[i] = x
δ′ = d(X, S)
if δ′ < δ

δ = δ′
best_pair = (i,j)

end
end

end
S[i] = s

end
done = best_pair == (0,0)
if !done

i,j = best_pair
S[i] = X[j]

end
end
return S

end

Algorithm 13.9. The exchange al-
gorithm for finding m-element sam-
pling plans that minimize a dis-
tance metric d for discrete set X.

function multistart_local_search(X, m, alg, k_max, d=d_max)
sets = [alg(X, m, d) for i in 1 : k_max]
return sets[argmin([d(X, S) for S in sets])]

end

Algorithm 13.10. Multistart local
search runs a particular search
algorithm multiple times and re-
turns the best result. Here, X is
the list of points, m is the size
of the desired sampling plan,
alg is either exchange_algorithm
or greedy_local_search, k_max is
the number of iterations to run,
and d is the distance metric.
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x1

x
2

greedy local search

x1

exchange algorithm
Figure 13.9. Space-filling sub-
sets obtained with both greedy lo-
cal search and the exchange algo-
rithm.

100 102 104

10−4

10−2

100

number of samples

re
lat

ive
er
ro

r

rand Sobol

Figure 13.10. The error from
estimating

∫ 1
0 sin(10x) dx using

Monte Carlo integration with ran-
dom numbers from U(0, 1) and
a Sobol sequence. The Sobol se-
quence, covered in section 13.7.3,
converges faster.

Quasi-random sequences are typically constructed for the unit n-dimensional
hypercube, [0, 1]n. Any multidimensional function with bounds on each variable
can be transformed into such a hypercube. This transformation is implemented
in algorithm 7.9.

Various methods exist for generating quasi-random sequences. Several such
methods are compared to random sampling in figure 13.12.

13.7.1 Additive Recurrence
Simple recurrence relations of the form:

x(k+1) = x(k) + c (mod 1) (13.7)

produce space-filling sets provided that c is irrational. The value of c leading to
the smallest discrepancy is

c = 1− ϕ =

√
5− 1

2
≈ 0.618034 (13.8)

where ϕ is the golden ratio.14 14 C. Schretter, L. Kobbelt, and P.-O.
Dehaye, ‘‘Golden Ratio Sequences
for Low-Discrepancy Sampling,’’
Journal of Graphics Tools, vol. 16,
no. 2, pp. 95–104, 2016.

We can construct a space-filling set over n dimensions using an additive recur-
rence sequence for each coordinate, each with its own value of c. The square roots
of the primes are known to be irrational, and can thus be used to obtain different
sequences for each coordinate:

c1 =
√

2, c2 =
√

3, c3 =
√

5, c4 =
√

7, c5 =
√

11, . . . (13.9)
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Methods for additive recurrence are implemented in algorithm 13.11.

using Primes
function get_filling_set_additive_recurrence(m; c=φ-1)

X = [rand()]
for i in 2 : m

push!(X, mod(X[end] + c, 1))
end
return X

end
function get_filling_set_additive_recurrence(m, n)

ps = primes(max(ceil(Int, n*(log(n) + log(log(n)))), 6))
seqs = [get_filling_set_additive_recurrence(m, c=sqrt(p))

for p in ps[1:n]]
return [collect(x) for x in zip(seqs...)]

end

Algorithm 13.11. Additive
recurrence for constructing
m-element filling sequences over
n-dimensional unit hypercubes.
The Primes package is used to
generate the first n prime numbers,
where the kth prime number is
bounded by

k(log k + log log k)

for k > 6.

13.7.2 Halton Sequence
The Halton sequence is a multidimensional quasi-random space-filling set.15 The 15 J.H. Halton, ‘‘Algorithm 247:

Radical-Inverse Quasi-Random
Point Sequence,’’ Communications
of the ACM, vol. 7, no. 12, pp. 701–
702, 1964.

single-dimensional version, called van der Corput sequences, generates sequences
where the unit interval is divided into powers of base b. For example, b = 2

produces:
X =

{
1

2
,

1

4
,

3

4
,

1

8
,

5

8
,

3

8
,

7

8
,

1

16
, . . .

}

(13.10)

whereas b = 5 produces:

X =

{
1

5
,

2

5
,

3

5
,

4

5
,

1

25
,

6

25
,

11

25
, . . .

}

(13.11)

Multi-dimensional space-filling sequences use one van der Corput sequence for
each dimension, each with its own base b. The bases, however, must be coprime16 16 Two integers are coprime if the

only positive integer that divides
them both is 1.in order to be uncorrelated. Methods for constructing Halton sequences are

implemented in algorithm 13.12.
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using Primes
function halton(i, b)

result, f = 0.0, 1.0
while i > 0

f = f / b;
result = result + f * mod(i, b)
i = floor(Int, i / b)

end
return result

end
get_filling_set_halton(m; b=2) = [halton(i,b) for i in 1: m]
function get_filling_set_halton(m, n)

bs = primes(max(ceil(Int, n*(log(n) + log(log(n)))), 6))
seqs = [get_filling_set_halton(m, b=b) for b in bs[1:n]]
return [collect(x) for x in zip(seqs...)]

end

Algorithm 13.12. Halton
quasi-random m-element filling
sequences over n-dimensional unit
hypercubes, where b is the base.
The bases bs must be coprime.

Figure 13.11. The Halton sequence
with b = [19, 23] for which the
first 18 samples are perfectly lin-
early correlated.For large primes, we can get correlation in the first few numbers. Such a corre-

lation is shown in figure 13.11. Correlation can be avoided by the leaped Halton
method,17 which takes every pth point, where p is a prime different from all 17 L. Kocis and W. J. Whiten, ‘‘Com-

putational Investigations of Low-
Discrepancy Sequences,’’ ACM
Transactions on Mathematical Soft-
ware, vol. 23, no. 2, pp. 266–294,
1997.

coordinate bases.

13.7.3 Sobol Sequences
Sobol sequences are quasi-random space-filling sequences for n-dimensional hy-
percubes.18 They are generated by xor-ing the previous Sobol number with a set 18 I.M. Sobol, ‘‘On the Distribu-

tion of Points in a Cube and the
Approximate Evaluation of Inte-
grals,’’ USSR Computational Math-
ematics and Mathematical Physics,
vol. 7, no. 4, pp. 86–112, 1967.

of direction numbers:19

19 The symbol ⊻ denotes the xor op-
eration, which returns true if and
only if both inputs are different.

X
(i)
j = X

(i−1)
j ⊻ v

(k)
j (13.12)

where v
(k)
j is the jth bit of the kth direction number. Tables of good direction

numbers have been provided by various authors.20

20 The Sobol.jl package provides
an implementation for up to 1,111
dimensions.

A comparison of these and previous approaches is shown in figure 13.12. For
high values several methods exhibit a clear underlying structure.
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Figure 13.12. A comparison of
space-filling sampling plans in two
dimensions. Samples are colored
according to the order in which
they are sampled. The uniform
projection plan was generated ran-
domly and is not optimized.
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13.8 Summary

• Sampling plans are used to cover search spaces with a limited number of
points.

• Full factorial sampling, which involves sampling at the vertices of a uniformly
discretized grid, requires a number of points exponential in the number of
dimensions.

• Uniform projection plans, which project uniformly over each dimension, can
be efficiently generated and can be optimized to be space filling.

• Greedy local search and the exchange algorithm can be used to find a subset
of points that maximally fill a space.

• Quasi-random sequences are deterministic procedures by which space-filling
sampling plans can be generated.

13.9 Exercises

Exercise 13.1. Filling a multidimensional space requires exponentially more
points as the number of dimensions increases. To help build this intuition, deter-
mine the side lengths of an n-dimensional hypercube such that it fills half of the
volume of the n-dimensional unit hypercube.
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Exercise 13.2. Suppose that you sample randomly inside a unit sphere in n

dimensions. Compute the probability that a randomly sampled point is within ǫ

distance from the surface of the sphere as n→ ∞? Hint: The volume of a sphere
is C(n)rn, where r is the radius and C(n) is a function of the dimension n only.
Exercise 13.3. Suppose we have a sampling plan X = {x(1), . . . , x(10)}, where

x(i) = [cos(2πi/10), sin(2πi/10)] (13.13)

Compute the Morris-Mitchell criterion for X using an L2 norm when the parame-
ter q is set to 2. In other words, evaluate Φ2(X). If we add [2, 3] to each x(i), will
Φ2(X) change? Why or why not?
Exercise 13.4. Additive recurrence requires that the multiplicative factor c in
equation (13.7) be irrational. Why can c not be rational?





14 Surrogate Models

The previous chapter discussed methods for producing a sampling plan. This
chapter shows how to use these samples to construct models of the objective
function that can be used in place of the real objective function. Such surrogate
models are designed to be smooth and inexpensive to evaluate so that they can be
efficiently optimized. The surrogate model can then be used to help direct the
search for the optimum of the real objective function.

14.1 Fitting Surrogate Models

A surrogate model f̂ parameterized by θ is designed to mimic the true objective
function f . The parameters θ can be adjusted to fit the model based on samples
collected from f . An example surrogate model is shown in figure 14.1.

x

y

design points
surrogate model
true objective function

Figure 14.1. Surrogate models ap-
proximate the true objective func-
tion. The model is fitted to the eval-
uated design points but deviates
farther away from them.

Suppose we have m design points

X =
{

x(1), x(2), . . . , x(m)
}

(14.1)

and associated function evaluations

y =
{

y(1), y(2), . . . , y(m)
}

(14.2)

For a particular set of parameters, the model will predict

ŷ =
{

f̂θ(x
(1)), f̂θ(x

(2)), . . . , f̂θ(x
(m))

}

(14.3)

Fitting a model to a set of points requires tuning the parameters to minimize
the difference between the true evaluations and those predicted by the model,
typically according to an Lp norm:1

1 It is common to use the L2 norm.
Minimizing this equation with an
L2 norm is equivalent to minimiz-
ing themean squared error at those
data points.

minimize
θ

‖y− ŷ‖p (14.4)
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Equation (14.4) penalizes the deviation of the model only at the data points.
There is no guarantee that the model will continue to fit well away from observed
data, and model accuracy typically decreases the farther we go from the sampled
points.

This form of model fitting is called regression. A large body of work exists for
solving regression problems, and it is extensively studied in machine learning.2 2 K. P. Murphy, Machine Learning: A

Probabilistic Perspective. MIT Press,
2012.The rest of this chapter covers several popular surrogate models and algorithms

for fitting surrogate models to data, and concludes with methods for choosing
between types of models.

14.2 Linear Models

A simple surrogate model is the linear model, which has the form3 3 This equation may seem familiar.
It is the equation for a hyperplane.

f̂ = w0 + w⊤x θ = {w0, w} (14.5)

For an n-dimensional design space, the linear model has n + 1 parameters, and
thus requires at least n + 1 samples to fit unambiguously.

Instead of having both w and w0 as parameters, it is common to construct a
single vector of parameters θ = [w0, w] and prepend 1 to the vector x to get

f̂ = θ⊤x (14.6)

Finding an optimal θ requires solving a linear regression problem:

minimize
θ

‖y− ŷ‖2
2 (14.7)

which is equivalent to solving

minimize
θ

‖y− Xθ‖2
2 (14.8)

where X is a design matrix formed from m data points

X =









(x(1))⊤

(x(2))⊤
...

(x(m))⊤









(14.9)
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function design_matrix(X)
n, m = length(X[1]), length(X)
return [j==0 ? 1.0 : X[i][j] for i in 1:m, j in 0:n]

end
function linear_regression(X, y)

θ = pinv(design_matrix(X))*y
return x -> θ⋅[1; x]

end

Algorithm 14.1. A method for con-
structing a designmatrix from a list
of design points X and a method
for fitting a surrogate model using
linear regression to a list of design
points X and a vector of objective
function values y.

Algorithm 14.1 implements methods for computing a design matrix and for
solving a linear regression problem. Several cases for linear regression are shown
in figure 14.2.

Linear regression has an analytic solution

θ = X+y (14.10)

where X+ is the Moore-Penrose pseudoinverse of X.
If X⊤X is invertible, the pseudoinverse can be computed as

X+ =
(

X⊤X
)−1

X⊤ (14.11)

If XX⊤ is invertible, the pseudoinverse can be computed as

X+ = X⊤
(

XX⊤
)−1

(14.12)

The function pinv computes the pseudoinverse of a given matrix.4 4 The function pinv uses the sin-
gular value decomposition, X =
UΣV∗, to compute the pseudoin-
verse:

X+ = VΣ+U∗

where the pseudoinverse of the di-
agonal matrix Σ is obtained by tak-
ing the reciprocal of each nonzero
element of the diagonal and then
transposing the result.

14.3 Basis Functions

The linear model is a linear combination of the components of x:

f̂ (x) = θ1x1 + · · ·+ θnxn =
n

∑
i=1

θixi = θ⊤x (14.13)

which is a specific example of a more general linear combination of basis functions

f̂ (x) = θ1b1(x) + · · ·+ θqbq(x) =
q

∑
i=1

θibi(x) = θ⊤b(x) (14.14)
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x

y

m < n + 1

x

y

m = n + 1

x

y

nonindependent points

x

y

m > n + 1

Figure 14.2. Models resulting from
linear regression, whichminimizes
the square vertical distance of the
model from each point. The pseu-
doinverse produces a unique solu-
tion for any nonempty point con-
figuration.

The bottom-left subfigure
shows the model obtained for
two repeated points, in this case,
m = n + 1. Because the two entries
are repeated, the matrix X is
nonsingular. Although X does not
have an inverse in this case, the
pseudoinverse produces a unique
solution that passes between the
two points.
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In the case of linear regression, the basis functions simply extract each component,
bi(x) = xi.

Any surrogate model represented as a linear combination of basis functions
can be fit using regression:

minimize
θ

‖y− Bθ‖2
2 (14.15)

where B is the basis matrix formed from m data points:

B =









b(x(1))⊤

b(x(2))⊤
...

b(x(m))⊤









(14.16)

The weighting parameters can be obtained using the pseudoinverse

θ = B+y (14.17)

Algorithm 14.2 implements this more general regression procedure.

using LinearAlgebra
function regression(X, y, bases)

B = [b(x) for x in X, b in bases]
θ = pinv(B)*y
return x -> sum(θ[i] * bases[i](x) for i in 1 : length(θ))

end

Algorithm 14.2. A method for fit-
ting a surrogate model to a list of
design points X and corresponding
objective function values yusing re-
gression with basis functions con-
tained in the bases array.

Linear models cannot capture nonlinear relations. There are a variety of other
families of basis functions that can represent more expressive surrogate models.
The remainder of this section discusses a few common families.

14.3.1 Polynomial Basis Functions
Polynomial basis functions consist of a product of design vector components, each
raised to a power. Linear basis functions are a special case of polynomial basis
functions.

From the Taylor series expansion5 we know that any infinitely differentiable 5 Covered in appendix C.2.
function can be closely approximated by a polynomial of sufficient degree. We
can construct these bases using algorithm 14.3.
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In one dimension, a polynomial model of degree k has the form

f̂ (x) = θ0 + θ1x + θ2x2 + θ3x3 + · · ·+ θkxk =
k

∑
i=0

θix
i (14.18)

Hence, we have a set of basis functions bi(x) = xi for i ranging from 0 to k.
In two dimensions, a polynomial model of degree k has basis functions of the

form
bij(x) = xi

1x
j
2 for i, j ∈ {0, . . . , k}, i + j ≤ k (14.19)

Fitting a polynomial surrogate model is a regression problem, so a polynomial
model is linear in higher dimensional space (figure 14.3). Any linear combination
of basis functions can be viewed as linear regression in a higher dimensional
space.

x

y

x x2

y

f (x)

f̂ (x)

Figure 14.3. A polynomial model
is linear in higher dimensions. The
function exists in the plane formed
from its bases, but it does not oc-
cupy the entire plane because the
terms are not independent.

14.3.2 Sinusoidal Basis Functions
Any continuous function over a finite domain can be represented using an infi-
nite set of sinusoidal basis functions.6 A Fourier series can be constructed for any 6 The Fourier series is also exact for

functions defined over the entire
real line if the function is periodic.integrable univariate function f on an interval [a, b]

f (x) =
θ0

2
+

∞

∑
i=1

θ
(sin)
i sin

(
2πix

b− a

)

+ θ
(cos)
i cos

(
2πix

b− a

)

(14.20)
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polynomial_bases_1d(i, k) = [x->x[i]^p for p in 0:k]
function polynomial_bases(n, k)

bases = [polynomial_bases_1d(i, k) for i in 1 : n]
terms = Function[]
for ks in product([0:k for i in 1:n]...)

if sum(ks) ≤ k
push!(terms,

x->prod(b[j+1](x) for (j,b) in zip(ks,bases)))
end

end
return terms

end

Algorithm 14.3. A method for con-
structing an array of polynomial
basis functions up to a degree k
for the ith component of a design
point, and a method for construct-
ing a list of n-dimensional polyno-
mial bases for terms up to degree
k.

where

θ0 =
2

b− a

∫ b

a
f (x) dx (14.21)

θ
(sin)
i =

2

b− a

∫ b

a
f (x) sin

(
2πix

b− a

)

dx (14.22)

θ
(cos)
i =

2

b− a

∫ b

a
f (x) cos

(
2πix

b− a

)

dx (14.23)

Just as the first few terms of a Taylor series are used in polynomial models, so
too are the first few terms of the Fourier series used in sinusoidal models. The
bases for a single component over the domain x ∈ [a, b] are:







b0(x) = 1/2

b
(sin)
i (x) = sin

(
2πix
b−a

)

b
(cos)
i (x) = cos

(
2πix
b−a

)
(14.24)

We can combine the terms for multidimensional sinusoidal models in the same
way we combine terms in polynomial models. Algorithm 14.4 can be used to
construct sinusoidal basis functions. Several cases for sinusoidal regression are
shown in figure 14.4.

14.3.3 Radial Basis Functions
A radial function ψ is one which depends only on the distance of a point from
some center point c, such that it can be written ψ(x, c) = ψ(‖x− c‖) = ψ(r).
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function sinusoidal_bases_1d(j, k, a, b)
T = b[j] - a[j]
bases = Function[x->1/2]
for i in 1 : k

push!(bases, x->sin(2π*i*x[j]/T))
push!(bases, x->cos(2π*i*x[j]/T))

end
return bases

end
function sinusoidal_bases(k, a, b)

n = length(a)
bases = [sinusoidal_bases_1d(i, k, a, b) for i in 1 : n]
terms = Function[]
for ks in product([0:2k for i in 1:n]...)

powers = [div(k+1,2) for k in ks]
if sum(powers) ≤ k

push!(terms,
x->prod(b[j+1](x) for (j,b) in zip(ks,bases)))

end
end
return terms

end

Algorithm 14.4. The method
sinusoidal_bases_1d produces a
list of basis functions up to degree
k for the ith component of the de-
sign vector given lower bound a
and upper bound b. The method
sinusoidal_bases produces all
base function combinations up to
degree k for lower-bound vector a
and upper-bound vector b.
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Figure 14.4. Fitting sinusoidal
models to noisy points.
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Radial functions are convenient basis functions because placing a radial function
contributes a hill or valley to the function landscape. Some common radial basis
functions are shown in figure 14.5.
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Figure 14.5. Several radial basis
functions.Radial basis functions require specifying the center points. One approachwhen

fitting radial basis functions to a set of data points is to use the data points as the
centers. For a set of m points, one thus constructs m radial basis functions

bi(x) = ψ(‖x− x(i)‖) for i ∈ {1, . . . , m} (14.25)

The corresponding m×m basis matrix is always semidefinite. Algorithm 14.5 can
be used to construct radial basis functions with known center points. Surrogate
models with different radial basis functions are shown in figure 14.6.

radial_bases(ψ, C, p=2) = [x->ψ(norm(x - c, p)) for c in C] Algorithm 14.5. A method for ob-
taining a list of basis functions
given a radial basis function ψ, a
list of centers C, and an Lp norm
parameter p.
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x sin(5x)

ψ = exp(−2r2)

ψ = exp(−5r2)

ψ = exp(−10r2)

Figure 14.6. Several different Gaus-
sian radial basis functions used to
fit x sin(5x) based on 4 noise-free
samples.

14.4 Fitting Noisy Objective Functions

Models fit using regression will pass as close as possible to every design point.
When the objective function evaluations are noisy, complex models are likely to
excessively contort themselves to pass through every point. However, smoother
fits are often better predictors of the true underlying objective function.

The basis regression problem specified in equation (14.15) can be augmented
to prefer smoother solutions. A regularization term is added in addition to the
prediction error in order to give preference to solutions with lower weights. The
resulting basis regression problem with L2 regularization7 is: 7 Other Lp-norms, covered in ap-

pendix C.4, can be used as well.
Using the L1 norm will encourage
sparse solutions with less influen-
tial component weights set to zero,
which can be useful in identifying
important basis functions.

minimize
θ

‖y− Bθ‖2
2 + λ‖θ‖2

2 (14.26)

where λ ≥ 0 is a smoothing parameter, with λ = 0 resulting in no smoothing.
The optimal parameter vector is given by:8

8 The matrix (B⊤B + λI
) is not al-

ways invertible. We can always pro-
duce an invertible matrix with a
sufficiently large λ.

θ =
(

B⊤B + λI
)−1

B⊤y (14.27)

where I is the identity matrix.
Algorithm 14.6 implements regression with L2 regularization. Surrogate mod-

els with different radial basis functions fit to noisy samples are shown in fig-
ure 14.7.



264 chapter 14. surrogate models

function regression(X, y, bases, λ)
B = [b(x) for x in X, b in bases]
θ = (B'B + λ*I)\B'y
return x -> sum(θ[i] * bases[i](x) for i in 1 : length(θ))

end

Algorithm 14.6. A method for re-
gression in the presence of noise,
where λ is a smoothing term. It re-
turns a surrogate model fitted to
a list of design points X and corre-
sponding objective function values
y using regression with basis func-
tions bases.
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x sin(5x)

λ = 0

λ = 0.1

λ = 0.5

Figure 14.7. Several different Gaus-
sian radial basis functions used to
fit x sin(5x) with zero mean, stan-
dard deviation 0.1 error based on
10 noisy samples and radial basis
function ψ = exp(−5r2).
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14.5 Model Selection

So far, we have discussed how to fit a particular model to data. This section
explains how to select which model to use. We generally want to minimize gen-
eralization error, which is a measure of the error of the model on the full design
space, including points that may not be included in the data used to train the
model. One way to measure generalization error is to use the expected squared
error of its predictions:

ǫgen = Ex∼X

[(

f (x)− f̂ (x)
)2
]

(14.28)

Of course, we cannot calculate this generalization error exactly because it requires
knowing the functionwe are trying to approximate. It may be tempting to estimate
the generalization error of a model from the training error. One way to measure
training error is to use the mean squared error (MSE) of the model evaluated on
the m samples used for training:

ǫtrain =
1

m

m

∑
i=1

(

f (x(i))− f̂ (x(i))
)2

(14.29)

However, performing well on the training data does not necessarily correspond
to low generalization error. Complex models may reduce the error on the training
set, but they may not provide good predictions in other points in the design space
as illustrated in example 14.1.9 9 A major theme in machine learn-

ing is balancing model complex-
ity to avoid overfitting the training
data. K. P. Murphy, Machine Learn-
ing: A Probabilistic Perspective. MIT
Press, 2012.

This section discusses several methods for estimating generalization error.
These methods train and test on subsets of the data. We introduce the TrainTest
type (algorithm 14.7), which contains a list of training indices and a list of test
indices. Themethod fit takes in a training set and produces amodel. Themethod
metric takes a model and a test set and produces a metric, such as the mean
squared error. The method train_and_validate (algorithm 14.7) is a utility
function for training and then evaluating a model. Although we train on subsets
of the data when estimating the generalization error, once we have decided which
model to use, we can train on the full dataset.
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Consider fitting polynomials of varying degrees to evaluations of the objec-
tive function

f (x) = x/10 + sin(x)/4 + exp
(

−x2
)

Below we plot polynomial surrogate models of varying degrees using the
same nine evaluations evenly spaced over [−4, 4]. The training and gener-
alization error are shown as well, where generalization is calculated over
[−5, 5].
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x

The plot shows that the generalization error is high for both very low and
high values of k, and that training error decreases as we increase the polyno-
mial degree. The high-degree polynomials are particularly poor predictors
for designs outside [−4, 4].

Example 14.1. A comparison of
training and generalization error
as the degree of a polynomial sur-
rogate model is varied.



14.5. model selection 267

struct TrainTest
train
test

end
function train_and_validate(X, y, tt, fit, metric)

model = fit(X[tt.train], y[tt.train])
return metric(model, X[tt.test], y[tt.test])

end

Algorithm 14.7. A utility type and
method for training a model and
then validating it on ametric. Here,
train and test are lists of indices
into the training data, X is a list of
design points, y is the vector of cor-
responding function evaluations,
tt is a train-test partition, fit is a
model fitting function, and metric
evaluates a model on a test set to
produce an estimate of generaliza-
tion error.14.5.1 Holdout

train test

train(•) test( f̂ , •) generalization error estimate

Figure 14.8. The holdout method
(left) partitions the data into train
and test sets.

x

y

f

f̂

training samples
holdout samples

Figure 14.9. Poor train-test splits
can result in poor model perfor-
mance.

A simple approach to estimating the generalization error is the holdout method,
which partitions the available data into a test set Dh with h samples and a training
set Dt consisting of all remaining m − h samples as shown in figure 14.8. The
training set is used to fit model parameters. The held out test set is not used
during model fitting, and can thus be used to estimate the generalization error.
Different split ratios are used, typically ranging from 50% train, 50% test to 90%
train, 10% test, depending on the size and nature of the dataset. Using too few
samples for training can result in poor fits (figure 14.9), whereas using too many
will result in poor generalization estimates.

The holdout error for a model f̂ fit to the training set is

ǫholdout =
1

h ∑
(x,y)∈Dh

(

y− f̂ (x)
)2

(14.30)

Even if the partition ratio is fixed, the holdout error will depend on the partic-
ular train-test partition chosen. Choosing a partition at random (algorithm 14.8)
will only give a point estimate. In random subsampling (algorithm 14.9), we apply
the holdout method multiple times with randomly selected train-test partitions.
The estimated generalization error is the mean over all runs.10 Because the valida- 10 The standard deviation over all

runs can be used to estimate the
standard deviation of the esti-
mated generalization error.

tion sets are chosen randomly, this method does not guarantee that we validate
on all of the data points.
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function holdout_partition(m, h=div(m,2))
p = randperm(m)
train = p[(h+1):m]
holdout = p[1:h]
return TrainTest(train, holdout)

end

Algorithm 14.8. A method for
randomly partitioning m data sam-
ples into training and holdout sets,
where h samples are assigned to
the holdout set.

function random_subsampling(X, y, fit, metric;
h=div(length(X),2), k_max=10)
m = length(X)
mean(train_and_validate(X, y, holdout_partition(m, h),

fit, metric) for k in 1 : k_max)
end

Algorithm 14.9. The random sub-
sampling method used to obtain
mean and standard deviation esti-
mates for model generalization er-
ror using k_max runs of the holdout
method.

14.5.2 Cross Validation

D1 D2 D3 D4 D5

train(••••) test( f̂ , •) generalization error estimate
train(••••) test( f̂ , •) generalization error estimate
train(••••) test( f̂ , •) generalization error estimate
train(••••) test( f̂ , •) generalization error estimate
train(••••) test( f̂ , •) generalization error estimate

generalization error µ and σ

Figure 14.10. Cross-validation par-
titions the data into equally sized
sets. Each set is the holdout set
once. Here we show 5-fold cross-
validation.

Using a train-test partition can be wasteful because our model tuning can take
advantage only of a segment of our data. Better results are often obtained by using
k-fold cross validation.11 Here, the original dataset D is randomly partitioned into k 11 Also known as rotation estimation.
setsD1,D2, . . . ,Dk of equal, or approximately equal, size, as shown in figure 14.10
and implemented in algorithm 14.10. We then train k models, one on each subset
of k− 1 sets, and we use the withheld set to estimate the generalization error. The
cross-validation estimate of generalization error is the mean generalization error
over all folds:12

12 As with random subsampling,
an estimate of variance can be ob-
tained from the standard deviation
over folds.
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ǫcross-validation =
1

k

k

∑
i=1

ǫ
(i)
cross-validation

ǫ
(i)
cross-validation =

1

|D(i)
test|

∑
(x,y)∈D(i)

test

(

y− f̂ (i)(x)
)2 (14.31)

where ǫ
(i)
cross-validation and D(i)

test are the cross-validation estimate and the withheld
test set, respectively, for the ith fold.

function k_fold_cross_validation_sets(m, k)
perm = randperm(m)
sets = TrainTest[]
for i = 1:k

validate = perm[i:k:m];
train = perm[setdiff(1:m, i:k:m)]
push!(sets, TrainTest(train, validate))

end
return sets

end
function cross_validation_estimate(X, y, sets, fit, metric)

mean(train_and_validate(X, y, tt, fit, metric)
for tt in sets)

end

Algorithm 14.10. The method
k_fold_cross_validation_sets
constructs the sets needed for
k-fold cross validation on m
samples, with k ≤ m. The method
cross_validation_estimate
computes the mean of the gen-
eralization error estimate by
training and validating on the list
of train-validate sets contained
in sets. The other variables are
the list of design points X, the
corresponding objective function
values y, a function fit that trains
a surrogate model, and a function
metric that evaluates a model on
a data set.

Cross-validation also depends on the particular data partition. An exception is
leave-one-out cross-validation with k = m, which has a deterministic partition. It
trains on as much data as possible, but it requires training m models.13 Averag- 13 M. Stone, ‘‘Cross-Validatory

Choice and Assessment of Statis-
tical Predictions,’’ Journal of the
Royal Statistical Society, vol. 36,
no. 2, pp. 111–147, 1974.

ing over all ( m
m/k) possible partitions, known as complete cross-validation, is often

too expensive. While one can average multiple cross-validation runs, it is more
common to average the models from a single cross-validation partition.

Cross-validation is demonstrated in example 14.2.
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14.5.3 The Bootstrap
The bootstrap method14 uses multiple bootstrap samples, which consist of m indices 14 B. Efron, ‘‘Bootstrap Methods:

Another Look at the Jackknife,’’
The Annals of Statistics, vol. 7, pp. 1–
26, 1979.

into a dataset of size m independently chosen uniformly at random. The indices
are chosen with replacement, so some indices may be chosen multiple times and
some indices may not be chosen at all as shown in figure 14.11. The bootstrap
sample is used to fit a model that is then evaluated on the original training set. A
method for obtaining bootstrap samples is given in algorithm 14.11.

If b bootstrap samples are made, then the bootstrap estimate of the general-
ization error is the mean of the corresponding generalization error estimates
ǫ
(1)
test, . . . , ǫ

(b)
test:

ǫboot =
1

b

b

∑
i=1

ǫ
(i)
test (14.32)

=
1

m

m

∑
j=1

1

b

b

∑
i=1

(

y(j) − f̂ (i)(x(j))
)2

(14.33)

where f̂ (i) is the model fit to the ith bootstrap sample. The bootstrap method is
implemented in algorithm 14.12.

The bootstrap error in equation (14.32) tests models on data points to which
they were fit. The leave-one-out bootstrap estimate removes this source of bias by
only evaluating fitted models to withheld data:

ǫleave-one-out-boot =
1

m

m

∑
j=1

1

c−j

b

∑
i=1







(

y(j) − f̂ (i)(x(j))
)2

if jth index was not in the ith bootstrap sample
0 otherwise

(14.34)
where c−j is the number of bootstrap samples that do not contain index j. The
leave-one-out bootstrap method is implemented in algorithm 14.13.

The probability of a particular index not being in a bootstrap sample is:
(

1− 1

m

)m

≈ e−1 ≈ 0.368 (14.35)

so a bootstrap sample is expected to have on average 0.632m distinct indices from
the original dataset.
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Suppose we want to fit a noisy objective function using radial basis functions
with the noise hyperparameter λ (section 14.4). We can use cross validation
to determine λ. We are given ten samples from our noisy objective function.
In practice, the objective function will be unknown, but this example uses

f (x) = sin(2x) cos(10x) + ǫ/10

where x ∈ [0, 1] and ǫ is random noise with zero mean and unit variance,
ǫ ∼ N (0, 1).

Random.seed!(0)
f = x->sin(2x)*cos(10x)
X = rand(10)
y = f.(X) + randn(length(X))/10

We will use three folds assigned randomly:
sets = k_fold_cross_validation_sets(length(X), 3)

Next, we implement our metric. We use the mean squared error:
metric = (f, X, y)->begin

m = length(X)
return sum((f(X[i]) - y[i])^2 for i in m)/m

end

We now loop through different values of λ and fit different radial basis
functions. We will use the Gaussian radial basis. Cross validation is used to
obtain the MSE for each value:
λs = 10 .^ range(-4, stop=2, length=101)
es = []
basis = r->exp(-5r^2)
for λ in λs

fit = (X, y)->regression(X, y, radial_bases(basis, X), λ)
push!(es,

cross_validation_estimate(X, y, sets, fit, metric)[1])
end

The resulting curve has a minimum at λ ≈ 0.2.

Example 14.2. Cross valida-
tion used to fit a hyperparameter.
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train(•) test( f̂ , •) generalization error estimate

Figure 14.11. A single bootstrap
sample consists of m indices into
the dataset sampled with replace-
ment. A bootstrap sample is used
to train amodel, which is evaluated
on the full dataset to obtain an esti-
mate of the generalization error.

bootstrap_sets(m, b) = [TrainTest(rand(1:m, m), 1:m) for i in 1:b] Algorithm 14.11. A method for ob-
taining b bootstrap samples, each
for a data set of size m.

function bootstrap_estimate(X, y, sets, fit, metric)
mean(train_and_validate(X, y, tt, fit, metric) for tt in sets)

end

Algorithm 14.12. A method for
computing the bootstrap general-
ization error estimate by training
and validating on the list of train-
validate sets contained in sets. The
other variables are the list of design
points X, the corresponding objec-
tive function values y, a function
fit that trains a surrogate model,
and a function metric that evalu-
ates a model on a data set.

function leave_one_out_bootstrap_estimate(X, y, sets, fit, metric)
m, b = length(X), length(sets)
ε = 0.0
models = [fit(X[tt.train], y[tt.train]) for tt in sets]
for j in 1 : m

c = 0
δ = 0.0
for i in 1 : b

if j ∉ sets[i].train
c += 1
δ += metric(models[i], [X[j]], [y[j]])

end
end
ε += δ/c

end
return ε/m

end

Algorithm 14.13. A method for
computing the leave-one-out boot-
strap generalization error estimate
using the train-validate sets sets.
The other variables are the list of
design points X, the correspond-
ing objective function values y, a
function fit that trains a surrogate
model, and a function metric that
evaluates a model on a data set.



14.5. model selection 273

Unfortunately, the leave-one-out bootstrap estimate introduces a new bias
due to the varying test set sizes. The 0.632 bootstrap estimate15 (algorithm 14.14)

15 The 0.632 bootstrap estimate was
introduced in B. Efron, ‘‘Estimat-
ing the Error Rate of a Predic-
tion Rule: Improvement on Cross-
Validation,’’ Journal of the Ameri-
can Statistical Association, vol. 78,
no. 382, pp. 316–331, 1983. A vari-
ant, the 0.632+ bootstrap estimate,
was introduced in B. Efron and
R. Tibshirani, ‘‘Improvements on
Cross-Validation: The .632+ Boot-
strap Method,’’ Journal of the Amer-
ican Statistical Association, vol. 92,
no. 438, pp. 548–560, 1997.

alleviates this bias:

ǫ0.632-boot = 0.632ǫleave-one-out-boot + 0.368ǫboot (14.36)

function bootstrap_632_estimate(X, y, sets, fit, metric)
models = [fit(X[tt.train], y[tt.train]) for tt in sets]
ϵ_loob = leave_one_out_bootstrap_estimate(X,y,sets,fit,metric)
ϵ_boot = bootstrap_estimate(X,y,sets,fit,metric)
return 0.632ϵ_loob + 0.368ϵ_boot

end Algorithm 14.14. A method for
obtaining the 0.632 bootstrap es-
timate for data points X, objective
function values y, number of boot-
strap samples b, fitting function
fit, and metric function metric.

Several generalization estimation methods are compared in example 14.3.

Consider ten evenly spread samples of f (x) = x2 + ǫ/2 over x ∈ [−3, 3],
where ǫ is zero-mean, unit-variance Gaussian noise. We would like to test
several different generalization error estimationmethodswhen fitting a linear
model to this data. Our metric is the root mean squared error, which is the
square root of the mean squared error.

The methods used are the holdout method with eight training samples,
five-fold cross validation, and the bootstrap methods each with ten bootstrap
samples. Each method was fitted 100 times and the resulting statistics are
shown below.

0 2 4 6 8 10 12

0.632 Bootstrap
Leave-One-Out Bootstrap

Bootstrap
5-Fold Cross Validation

Holdout

root mean squared error

Example 14.3. A comparison
of generalization error estimation
methods. The vertical lines in the
box and whisker plots indicate the
minimum, maximum, first and
third quartiles, and median of ev-
ery generalization error estimation
method among 50 trials.
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14.6 Summary

• Surrogate models are function approximations that can be optimized instead
of the true, potentially expensive objective function.

• Many surrogate models can be represented using a linear combination of basis
functions.

• Model selection involves a bias-variance tradeoff between models with low
complexity that cannot capture important trends and models with high com-
plexity that overfit to noise.

• Generalization error can be estimated using techniques such as holdout, k-fold
cross validation, and the bootstrap.

14.7 Exercises

Exercise 14.1. Derive an expression satisfied by the optimum of the regression
problem equation (14.8) by setting the gradient to zero. Do not invert anymatrices.
The resulting relation is called the normal equation.

Exercise 14.2. When would we use a more descriptive model, for example, with
polynomial features, versus a simpler model like linear regression?

Exercise 14.3. A linear regression problem of the form in equation (14.8) is not
always solved analytically, and optimization techniques are used instead. Why is
this the case?

Exercise 14.4. Suppose we evaluate our objective function at four points: 1, 2,
3, and 4, and we get back 0, 5, 4, and 6. We want to fit a polynomial model
f (x) = ∑

k
i=0 θix

i. Compute the leave-one-out cross validation estimate of the
mean squared error as k varies between 0 and 4. According to this metric, what is
the best value for k, and what are the best values for the elements of θ?



15 Probabilistic Surrogate Models

The previous chapter discussed how to construct surrogatemodels from evaluated
design points. When using surrogate models for the purpose of optimization, it
is often useful to quantify our confidence in the predictions of these models. One
way to quantify our confidence is by taking a probabilistic approach to surrogate
modeling. A common probabilistic surrogate model is the Gaussian process, which
represents a probability distribution over functions. This chapter will explain
how to use Gaussian processes to infer a distribution over the values of different
design points given the values of previously evaluated design points. We will
discuss how to incorporate gradient information as well as noisy measurements
of the objective function. Since the predictions made by a Gaussian process are
governed by a set of parameters, we will discuss how to infer these parameters
directly from data.

15.1 Gaussian Distribution

Before introducing Gaussian processes, we will first review some relevant proper-
ties of the multivariate Gaussian distribution, often also referred to as the multivari-
ate normal distribution.1 An n-dimensional Gaussian distribution is parameterized 1 The univariate Gaussian distribu-

tion is discussed in appendix C.7.by its mean µ and its covariance matrix Σ. The probability density at x is

N (x | µ, Σ) = (2π)−n/2|Σ|−1/2 exp

(

−1

2
(x− µ)⊤Σ

−1(x− µ)

)

(15.1)

Figure 15.1 shows contour plots of the density functions with different covariance
matrices. Covariance matrices are always positive semidefinite.

A value sampled from a Gaussian is written

x ∼ N (µ, Σ) (15.2)
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Figure 15.1. Multivariate Gaus-
sians with different covariance ma-
trices.Two jointly Gaussian random variables a and b can be written

[

a

b

]

∼ N
([

µa

µb

]

,

[

A C

C⊤ B

])

(15.3)

The marginal distribution2 for a vector of random variables is given by its corre- 2 The marginal distribution is the
distribution of a subset of the vari-
ables when the rest are integrated,
or marginalized, out. For a distri-
bution over two variables a and b
the marginal distribution over a is:

p(a) =
∫

p(a, b) db

sponding mean and covariance

a ∼ N (µa, A) b ∼ N (µb, B) (15.4)

The conditional distribution for a multivariate Gaussian also has a convenient
closed-form solution:

a | b ∼ N
(

µa|b, Σa|b
)

(15.5)
µa|b = µa + CB−1(b− µb) (15.6)
Σa|b = A−CB−1C⊤ (15.7)

Example 15.1 illustrates how to extract the marginal and conditional distributions
from a multivariate Gaussian.
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For example, consider
[

x1

x2

]

∼ N
([

0

1

]

,

[

3 1

1 2

])

The marginal distribution for x1 is N (0, 3), and the marginal distribution
for x2 is N (1, 2).

The conditional distribution for x1 given x2 = 2 is

µx1|x2=2 = 0 + 1 · 2−1 · (2− 1) = 0.5

Σx1|x2=2 = 3− 1 · 1−1 · 1 = 2.5

x1 | (x2 = 2) ∼ N (0.5, 2.5)

Example 15.1. Marginal and condi-
tional distributions for a multivari-
ate Gaussian.

15.2 Gaussian Processes

In the previous chapter, we approximated the objective function f using a sur-
rogate model function f̂ fitted to previously evaluated design points. A special
type of surrogate model known as a Gaussian process allows us not only to pre-
dict f but also to quantify our uncertainty in that prediction using a probability
distribution.3 3 A more extensive introduction

to Gaussian processes is provided
by C. E. Rasmussen and C.K. I.
Williams, Gaussian Processes for Ma-
chine Learning. MIT Press, 2006.

A Gaussian process is a distribution over functions. For any finite set of points
{x(1), . . . , x(m)}, the associated function evaluations {y1, . . . , ym} are distributed
according to:







y1
...

ym






∼ N













m(x(1))
...

m(x(m))







,







k(x(1), x(1)) · · · k(x(1), x(m))
... . . . ...

k(x(m), x(1)) · · · k(x(m), x(m))













(15.8)

where m(x) is a mean function and k(x, x′) is the covariance function, or kernel.4

4 The mean function produces the
expectation:

m(x) = E[ f (x)]

and the covariance function pro-
duces the covariance:
k(x, x′) =

E
[
( f (x)−m(x))( f (x′)−m(x′))

]

The mean function can represent prior knowledge about the function. The kernel
controls the smoothness of the functions. Methods for constructing the mean
vector and covariance matrix using mean and covariance functions are given in
algorithm 15.1.
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μ(X, m) = [m(x) for x in X]
Σ(X, k) = [k(x,x′) for x in X, x′ in X]
K(X, X′, k) = [k(x,x′) for x in X, x′ in X′]

Algorithm 15.1. The function μ for
constructing a mean vector given
a list of design points and a mean
function m, and the function Σ for
constructing a covariance matrix
given one or two lists of design
points and a covariance function
k.A common kernel function is the squared exponential kernel, where

k(x, x′) = exp

(

− (x− x′)2

2ℓ2

)

(15.9)

The parameter ℓ corresponds to what is called the characteristic length-scale, which
can be thought of as the distance we have to travel in design space until the
objective function value changes significantly.5 Hence, larger values of ℓ result 5 Amathematical definition of char-

acteristic length-scale is provided
by C. E. Rasmussen and C.K. I.
Williams, Gaussian Processes for Ma-
chine Learning. MIT Press, 2006.

in smoother functions. Figure 15.2 shows functions sampled from a Gaussian
processwith a zero-mean function and a squared exponential kernelwith different
characteristic length-scales.

0 2 4 6 8 10

−2

0

2

x

y

ℓ = 1/2

0 2 4 6 8 10

x

ℓ = 1

0 2 4 6 8 10

x

ℓ = 2

Figure 15.2. Functions sampled
from Gaussian processes with
squared exponential kernels.There are many other kernel functions besides the squared exponential. Several

are shown in figure 15.3. Many kernel functions use r, which is the distance
between x and x′. Usually the Euclidean distance is used. The Matérn kernel uses
the gamma function Γ, implemented by gamma from the SpecialFunctions.jl
package, and Kν(x) is the modified Bessel function of the second kind, implemented
by besselk(ν,x). The neural network kernel augments each design vector with a 1
for ease of notation: x̄ = [1, x1, x2, . . .] and x̄′ = [1, x′1, x′2, . . .].
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Figure 15.3. Functions sampled
from Gaussian processes with dif-
ferent kernel functions. Shown
functions are for σ2

0 = σ2
d = ℓ = 1,

p = 2, γ = ν = α = 0.5, and Σ = I.
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This chapterwill focus on examples ofGaussian processeswith single-dimensional
design spaces for ease of plotting. However, Gaussian processes can be defined
over multidimensional design spaces, as illustrated in figure 15.4.

x1

x
2

ℓ = 1/2

x1

ℓ = 1

x1

ℓ = 2

Figure 15.4. Functions sampled
from a Gaussian process with zero-
mean and squared-exponential
kernels over a two-dimensional de-
sign space.

As we will see in section 15.5, Gaussian processes can also incorporate prior
independent noise variance, denoted ν. A Gaussian process is thus defined by
mean and covariance functions, prior design points and their function evaluations,
and a noise variance. The associated type is given in algorithm 15.2.

mutable struct GaussianProcess
m # mean
k # covariance function
X # design points
y # objective values
ν # noise variance

end

Algorithm 15.2. A Gaussian pro-
cess is defined by a mean function
m, a covariance function k, sampled
design vectors X and their corre-
sponding values y, and a noise vari-
ance ν.

15.3 Prediction

Gaussian processes are able to represent distributions over functions using con-
ditional probabilities. Suppose we already have a set of points X and the corre-
sponding y, but wewish to predict the values ŷ at points X∗. The joint distribution
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is [

ŷ

y

]

∼ N
([

m(X∗)
m(X )

]

,

[

K(X∗, X∗) K(X∗, X)

K(X , X∗) K(X , X)

])

(15.10)

In the equation above, we use the functions m and K, which are defined as follows:

m(X) = [m(x(1)), . . . , m(x(n))] (15.11)

K(X, X′) =







k(x(1), x′(1)) · · · k(x(1), x′(m))
... . . . ...

k(x(n), x′(1)) · · · k(x(n), x′(m))







(15.12)

The conditional distribution is given by

ŷ | y ∼ N


m(X∗) + K(X∗, X)K(X, X)−1(y−m(X))
︸ ︷︷ ︸

mean
, K(X∗, X∗)−K(X∗, X)K(X, X)−1K(X, X∗)
︸ ︷︷ ︸

covariance



 (15.13)

Note that the covariance does not depend on y. This distribution is often referred
to as the posterior distribution.6 A method for computing and sampling from the

6 In the language of Bayesian statis-
tics, the posterior distribution is
the distribution of possible unob-
served values conditioned on ob-
served values.

posterior distribution defined by a Gaussian process is given in algorithm 15.3.

function mvnrand(μ, Σ, inflation=1e-6)
N = MvNormal(μ, Σ + inflation*I)
return rand(N)

end
Base.rand(GP, X) = mvnrand(μ(X, GP.m), Σ(X, GP.k))

Algorithm 15.3. The function
mvnrand samples from a multivari-
ate Gaussian with an added infla-
tion factor to prevent numerical is-
sues. The method rand samples a
Gaussian process GP at the given
design points in matrix X.

The predicted mean can be written as a function of x:

µ̂(x) = m(x) + K(x, X)K(X, X)−1(y−m(X)) (15.14)
= m(x) + θ⊤K(X, x) (15.15)

where θ = K(X, X)−1(y−m(X)) can be computed once and reused for different
values of x. Notice the similarity to the surrogate models in the previous chap-
ter. The value of the Gaussian process beyond the surrogate models discussed
previously is that it also quantifies our uncertainty in our predictions.

The variance of the predicted mean can also be obtained as a function of x:

ν̂(x) = K(x, x)−K(x, X)K(X, X)−1K(X, x) (15.16)



282 chapter 15. probabilistic surrogate models

In some cases, it is more convenient to formulate equations in terms of the
standard deviation, which is the square root of the variance:

σ̂(x) =
√

ν̂(x) (15.17)

The standard deviation has the same units as the mean. From the standard devia-
tion, we can compute the 95% confidence region, which is an interval containing
95% of the probability mass associated with the distribution over y given x. For
a particular x, the 95% confidence region is given by µ̂(x)± 1.96σ̂(x). One may
want to use a confidence level different from 95%, but we will use 95% for the
plots in this chapter. Figure 15.5 shows a plot of a confidence region associated
with a Gaussian process fit to four function evaluations.

x

y

confidence interval
true objective function
predicted function mean
fit points

Figure 15.5. A Gaussian process
using the squared exponential ker-
nel and its 95% confidence interval.
Uncertainty increases the farther
we are from a data point. The ex-
pected function value approaches
zero as we move far away from the
data point.

15.4 Gradient Measurements

Gradient observations can be incorporated into Gaussian processes in a manner
consistent with the existing Gaussian process machinery.7 The Gaussian process 7 For an overview, see for example

A. O’Hagan, ‘‘Some Bayesian Nu-
merical Analysis,’’ Bayesian Statis-
tics, vol. 4, J.M. Bernardo, J.O.
Berger, A. P. Dawid, and A. F.M.
Smith, eds., pp. 345–363, 1992.

is extended to include both the function value and its gradient:
[

y

∇y

]

∼ N
([

m f

m∇

]

,

[

K f f K f∇
K∇ f K∇∇

])

(15.18)



15.4. gradient measurements 283

where y ∼ N
(

m f , K f f

)

is a traditional Gaussian process, m∇ is a mean function
for the gradient,8 K f∇ is the covariance matrix between function values and 8 Like the mean of the function

value, m∇ is often zero.gradients, K∇ f is the covariance matrix between function gradients and values,
and K∇∇ is the covariance matrix between function gradients.

These covariance matrices are constructed using covariance functions. The
linearity of Gaussians causes these covariance functions to be related:

k f f (x, x′) = k(x, x′) (15.19)
k∇ f (x, x′) = ∇xk(x, x′) (15.20)
k f∇(x, x′) = ∇x′k(x, x′) (15.21)
k∇∇(x, x′) = ∇x∇x′k(x, x′) (15.22)

Example 15.2 uses these relations to derive the higher-order covariance functions
for a particular kernel.

Consider the squared exponential covariance function

k f f (x, x′) = exp

(

−1

2

∥
∥x− x′

∥
∥2
)

We can use equations (15.19) to (15.22) to obtain the other covariance func-
tions necessary for using Gaussian processes with gradient information:

k∇ f (x, x′)i = −(xi − x′i) exp

(

−1

2

∥
∥x− x′

∥
∥2
)

k∇∇(x, x′)ij = −
(

(i = j)− (xi − x′i)(xj − x′j)
)

exp

(

−1

2

∥
∥x− x′

∥
∥2
)

As a reminder, Boolean expressions, such as (i = j), return 1 if true and 0 if
false.

Example 15.2. Deriving covariance
functions for a Gaussian process
with gradient observations.

Prediction can be accomplished in the same manner as with a traditional
Gaussian process. We first construct the joint distribution






ŷ

y

∇y




 ∼ N











m f (X∗)
m f (X )

m∇(X )




 ,






K f f (X∗, X∗) K f f (X∗, X ) K f∇(X∗, X )

K f f (X , X∗) K f f (X , X ) K f∇(X , X )

K∇ f (X , X∗) K∇ f (X , X ) K∇∇(X , X )









 (15.23)
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For a Gaussian process over n-dimensional design vectors given m pairs of
function and gradient evaluations and ℓ query points, the covariance blocks have
the following dimensions:

ℓ× ℓ ℓ×m ℓ× nm

m× ℓ m×m m× nm

nm× ℓ nm×m nm× nm

(15.24)

Example 15.3 constructs such a covariance matrix.

Suppose we have evaluated a function and its gradient at two locations, x(1)

and x(2), and we wish to predict the function value at x̂. We can infer the
joint distribution over ŷ, y, and∇y using a Gaussian process. The covariance
matrix is:


















k f f (x̂, x̂) k f f (x̂, x(1) ) k f f (x̂, x(2) ) k f∇ (x̂, x(1) )1 k f∇ (x̂, x(1) )2 k f∇ (x̂, x(2) )1 k f∇ (x̂, x(2) )2

k f f (x
(1) , x̂) k f f (x

(1) , x(1) ) k f f (x
(1) , x(2) ) k f∇ (x(1) , x(1) )1 k f∇ (x(1) , x(1) )2 k f∇ (x(1) , x(2) )1 k f∇ (x(1) , x(2) )2

k f f (x
(2) , x̂) k f f (x

(2) , x(1) ) k f f (x
(2) , x(2) ) k f∇ (x(2) , x(1) )1 k f∇ (x(2) , x(1) )2 k f∇ (x(2) , x(2) )1 k f∇ (x(2) , x(2) )2

k∇ f (x
(1) , x̂)1 k∇ f (x

(1) , x(1) )1 k∇ f (x
(1) , x(2) )1 k∇∇ (x(1) , x(1) )11 k∇∇ (x(1) , x(1) )12 k∇∇ (x(1) , x(2) )11 k∇∇ (x(1) , x(2) )12

k∇ f (x
(1) , x̂)2 k∇ f (x

(1) , x(1) )2 k∇ f (x
(1) , x(2) )2 k∇∇ (x(1) , x(1) )21 k∇∇ (x(1) , x(1) )22 k∇∇ (x(1) , x(2) )12 k∇∇ (x(1) , x(2) )22

k∇ f (x
(2) , x̂)1 k∇ f (x

(2) , x(1) )1 k∇ f (x
(2) , x(2) )1 k∇∇ (x(2) , x(1) )11 k∇∇ (x(2) , x(1) )12 k∇∇ (x(2) , x(2) )11 k∇∇ (x(2) , x(2) )12

k∇ f (x
(2) , x̂)2 k∇ f (x

(2) , x(1) )2 k∇ f (x
(2) , x(2) )2 k∇∇ (x(2) , x(1) )21 k∇∇ (x(2) , x(1) )22 k∇∇ (x(2) , x(2) )21 k∇∇ (x(2) , x(2) )22



















Example 15.3. Constructing the co-
variance matrix for a Gaussian pro-
cess with gradient observations.

The conditional distribution follows the same Gaussian relations as in equa-
tion (15.13):

ŷ | y,∇y ∼ N (µ∇, Σ∇) (15.25)
where:

µ∇ = m f (X∗) +

[

K f f (X , X∗)
K∇ f (X , X∗)

]⊤ [
K f f (X , X ) K f∇(X , X )

K∇ f (X , X ) K∇∇(X , X )

]−1 [

y−m f (X)

∇y−m∇(X)

]

(15.26)

Σ∇ = K f f (X∗, X∗)−
[

K f f (X , X∗)
K∇ f (X , X∗)

]⊤ [
K f f (X , X ) K f∇(X , X )

K∇ f (X , X ) K∇∇(X , X )

]−1 [

K f f (X , X∗)
K∇ f (X , X∗)

]

(15.27)

The regions obtained when including gradient observations are compared to
those without gradient observations in figure 15.6.
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x

y

confidence interval without gradient
confidence interval with gradient
predicted mean without gradient
predicted mean with gradient
fit points
true function

Figure 15.6. Gaussian processes
with and without gradient infor-
mation using squared exponential
kernels. Incorporating gradient in-
formation can significantly reduce
the confidence intervals.

15.5 Noisy Measurements

So far we have assumed that the objective function f is deterministic. In practice,
however, evaluations of f may include measurement noise, experimental error,
or numerical roundoff.

We can model noisy evaluations as y = f (x) + z, where f is deterministic but
z is zero-mean Gaussian noise, z ∼ N (0, ν). The variance of the noise ν can be
adjusted to control the uncertainty.9 9 The techniques covered in sec-

tion 14.5 can be used to tune the
variance of the noise.The new joint distribution is:

[

ŷ

y

]

∼ N
([

m(X∗)
m(X )

]

,

[

K(X∗, X∗) K(X∗, X)

K(X , X∗) K(X , X) + νI

])

(15.28)

with conditional distribution:

ŷ | y, ν ∼ N (µ∗, Σ
∗) (15.29)

µ∗ = m(X∗) + K(X∗, X)(K(X, X) + νI)−1(y−m(X)) (15.30)
Σ
∗ = K(X∗, X∗)−K(X∗, X)(K(X, X) + νI)−1K(X, X∗) (15.31)

As the equations above show, accounting for Gaussian noise is straightforward
and the posterior distribution can be computed analytically. Figure 15.7 shows
a noisy Gaussian process. Algorithm 15.4 implements prediction for Gaussian
processes with noisy measurements.
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x

y

confidence region
true objective function
predicted function mean
fit points

Figure 15.7. A noisy Gaussian pro-
cess using a squared exponential
kernel.

function predict(GP, X_pred)
m, k, ν = GP.m, GP.k, GP.ν
tmp = K(X_pred, GP.X, k) / (K(GP.X, GP.X, k) + ν*I)
μₚ = μ(X_pred, m) + tmp*(GP.y - μ(GP.X, m))
S = K(X_pred, X_pred, k) - tmp*K(GP.X, X_pred, k)
νₚ = diag(S) .+ eps() # eps prevents numerical issues
return (μₚ, νₚ)

end

Algorithm 15.4. A method for ob-
taining the predicted means and
standard deviations in f under
a Gaussian process. The method
takes a Gaussian process GP and
a list of points X_pred at which to
evaluate the prediction. It returns
the mean and variance at each eval-
uation point.



15.6. f itting gaussian processes 287

15.6 Fitting Gaussian Processes

The choice of kernel and parameters has a large effect on the form of the Gaussian
process between evaluated design points. Kernels and their parameters can be
chosen using cross validation introduced in the previous chapter. Instead of
minimizing the squared error on the test data, we maximize the likelihood of the
data.10 That is, we seek the parameters θ that maximize the probability of the 10 Alternatively, we could maxi-

mize the pseudolikelihood as dis-
cussed by C. E. Rasmussen and
C.K. I. Williams, Gaussian Processes
for Machine Learning. MIT Press,
2006.

function values, p(y | X,θ). The likelihood of the data is the probability that the
observed points were drawn from the model Equivalently, we can maximize the
log likelihood, which is generally preferable becausemultiplying small probabilities
in the likelihood calculation can produce extremely small values. Given a dataset
D with n entries, the log likelihood is given by

log p(y | X, ν,θ) = −n

2
log 2π − 1

2
log |Kθ(X, X) + νI| − 1

2
(y−mθ(X))⊤(Kθ(X, X) + νI)−1(y−mθ(X))

(15.32)
where the mean and covariance functions are parameterized by θ.

Let us assume a zero mean such that mθ(X) = 0 and θ refers only to the
parameters for the Gaussian process covariance function. We can arrive at a
maximum likelihood estimate by gradient ascent. The gradient is then given by

∂

∂θj
log p(y | X,θ) =

1

2
y⊤K−1 ∂K

∂θj
K−1y− 1

2
tr
(

Σ
−1
θ

∂K

∂θj

)

(15.33)

where Σθ = Kθ(X, X) + νI. Above, we use the matrix derivative relations

∂K−1

∂θj
= −K−1 ∂K

∂θj
K−1 (15.34)

∂ log |K|
∂θj

= tr
(

K−1 ∂K

∂θj

)

(15.35)

where tr(A) denotes the trace of a matrix A, defined to be the sum of the elements
on the main diagonal.
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15.7 Summary

• Gaussian processes are probability distributions over functions.

• The choice of kernel affects the smoothness of the functions sampled from a
Gaussian process.

• The multivariate normal distribution has analytic conditional and marginal
distributions.

• We can compute the mean and standard deviation of our prediction of an
objective function at a particular design point given a set of past evaluations.

• We can incorporate gradient observations to improve our predictions of the
objective value and its gradient.

• We can incorporate measurement noise into a Gaussian process.

• We can fit the parameters of a Gaussian process using maximum likelihood.

15.8 Exercises

Exercise 15.1. Gaussian processes will grow in complexity during the optimiza-
tion process as more samples accumulate. How can this be an advantage over
models based on regression?

Exercise 15.2. How does the computational complexity of prediction with a
Gaussian process increase with the number of data points m?

Exercise 15.3. Consider the function f (x) = sin(x)/
(

x2 + 1
) over [−5, 5]. Plot

the 95% confidence bounds for a Gaussian process with derivative information
fitted to the evaluations at {−5,−2.5, 0, 2.5, 5}. What is the maximum standard
deviation in the predicted distribution within [−5, 5]? How many function evalu-
ations, evenly-spaced over the domain, are needed such that a Gaussian process
without derivative information achieves the same maximum predictive standard
deviation?
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Assume zero-mean functions and noise-free observations, and use the covari-
ance functions:

k f f (x, x′) = exp

(

−1

2

∥
∥x− x′

∥
∥2

2

)

k∇ f (x, x′) = (x′ − x) exp

(

−1

2

∥
∥x− x′

∥
∥2

2

)

k∇∇(x, x′) = ((x− x′)2 − 1) exp(−1

2

∥
∥x− x′

∥
∥2

2
)

Exercise 15.4. Derive the relation k f∇(x, x′)i = cov
(

f (x), ∂
∂x′i

f (x′)
)

= ∂
∂x′i

k f f (x, x′).

Exercise 15.5. Suppose we have a multivariate Gaussian distribution over two
variables a and b. Show that the variance of the conditional distribution over a

given b is no greater than the variance of the marginal distribution over a. Does
this make intuitive sense?

Exercise 15.6. Suppose we observe many outliers while sampling, that is, we
observe samples that do not fall within the confidence interval given by the
Gaussian process. This means the probabilistic model we chose is not appropriate.
What can we do?

Exercise 15.7. Consider model selection for the function evaluation pairs (x, y):

{(1, 0), (2,−1), (3,−2), (4, 1), (5, 0)}

Use leave-one-out cross-validation to select the kernel that maximizes the
likelihood of predicting the withheld pair given a Gaussian process over the other
pairs in the fold. Assume zero mean with no noise. Select from the kernels:

exp(−‖x− x′‖) exp(−‖x− x′‖2) (1+ ‖x− x′‖)−1 (1+ ‖x− x′‖2)−1 (1+ ‖x− x′‖)−2





16 Surrogate Optimization

The previous chapter explained how to use a probabilistic surrogate model, in
particular a Gaussian process, to infer probability distributions over the true
objective function. These distributions can be used to guide an optimization
process toward better design points.1 This chapter outlines several common 1 A. Forrester, A. Sobester, and A.

Keane, Engineering Design via Sur-
rogate Modelling: A Practical Guide.
Wiley, 2008.

techniques for choosing which design point to evaluate next. The techniques
we discuss here greedily optimize various metrics.2 We will also discuss how

2 An alternative to greedy opti-
mization is to frame the problem
as a partially observable Markov deci-
sion process and plan ahead some
number of steps as outlined by M.
Toussaint, ‘‘The Bayesian Search
Game,’’ in Theory and Principled
Methods for the Design of Metaheuris-
tics, Y. Borenstein and A. Moraglio,
eds. Springer, 2014, pp. 129–144.
See also R. Lam, K. Willcox, and
D.H. Wolpert, ‘‘Bayesian Opti-
mization with a Finite Budget: An
Approximate Dynamic Program-
ming Approach,’’ in Advances in
Neural Information Processing Sys-
tems (NIPS), 2016.

surrogate models can be used to optimize an objective measure in a safe manner.

16.1 Prediction-Based Exploration

In prediction-based exploration, we select the minimizer of the surrogate function.
An example of this approach is the quadratic fit search that we discussed earlier
in section 3.5. With quadratic fit search, we use a quadratic surrogate model to fit
the last three bracketing points and then select the point at the minimum of the
quadratic function.

If we use a Gaussian process surrogate model, prediction-based optimization
has us select the minimizer of the mean function

x(m+1) = arg min
x∈X

µ̂(x) (16.1)

where µ̂(x) is the predicted mean of a Gaussian process at a design point x based
on the previous m design points. The process is illustrated in figure 16.1.

Prediction-based optimization does not take uncertainty into account, and new
samples can be generated very close to existing samples. Sampling at locations
where we are already confident in the objective value is a waste of function
evaluations.
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x

y

x x x

true
predicted
fit points
next sample

Figure 16.1. Prediction-based opti-
mization selects the point that min-
imizes the mean of the objective
function.

16.2 Error-Based Exploration

Error-based exploration seeks to increase confidence in the true function. AGaussian
process can tell us both the mean and standard deviation at every point. A large
standard deviation indicates low confidence, so error-based exploration samples
at design points with maximum uncertainty.

The next sample point is:

x(m+1) = arg max
x∈X

σ̂(x) (16.2)

where σ̂(x) is the standard deviation of a Gaussian process at a design point x

based on the previous m design points. The process is illustrated in figure 16.2.

y

confidence region
true
predicted
fit points
sampled

x

y

x x x

Figure 16.2. Error-based explo-
ration selects a point with maximal
uncertainty.Gaussian processes are often defined over all of Rn. Optimization problems

with unbounded feasible sets will always have high uncertainty far away from
sampled points, making it impossible to become confident in the true underlying
function over the entire domain. Error-based explorationmust thus be constrained
to a closed region.
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16.3 Lower Confidence Bound Exploration

While error-based exploration reduces the uncertainty in the objective function
overall, its samples are often in regions that are unlikely to contain a global mini-
mum. Lower confidence bound exploration trades off between greedy minimization
employed by prediction-based optimization and uncertainty reduction employed
by error-based exploration. The next sample minimizes the lower confidence bound
of the objective function

LB(x) = µ̂(x)− ασ̂(x) (16.3)
where α ≥ 0 is a constant that controls the trade-off between exploration and ex-
ploitation. Exploration involves minimizing uncertainty, and exploitation involves
minimizing the predicted mean. We have prediction-based optimization with
α = 0, and we have error-based exploration as α approaches ∞. The process is
illustrated in figure 16.3.

y

confidence region
true
lower bound
predicted
fit points
sampled

x

y

x x x

Figure 16.3. Lower confidence
bound exploration trades off be-
tween minimizing uncertainty and
minimizing the predicted function.16.4 Probability of Improvement Exploration

We can sometimes obtain faster convergence by selecting the design point that
maximizes the chance that the new point will be better than the samples we have
seen so far. The improvement for a function sampled at x producing y = f (x) is

I(y) =







ymin − y if y < ymin
0 otherwise

(16.4)
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where ymin is the minimum value sampled so far.
The probability of improvement at points where σ̂ > 0 is

P(y < ymin) =
∫ ymin

−∞
N (y | µ̂, σ̂)dy (16.5)

= Φ

(
ymin − µ̂

σ̂

)

(16.6)

where Φ is the standard normal cumulative distribution function (see appendix C.7).
This calculation (algorithm 16.1) is shown in figure 16.4. Figure 16.5 illustrates
this process. When σ̂ = 0, which occurs at points where we have noiseless mea-
surements, the probability of improvement is zero.

best so far

probability of improvement

query point
x

y

true
predicted
fit points

Figure 16.4. The probability of im-
provement is the probability that
evaluating a particular point will
yield a better result than the best
so far. This figure shows the prob-
ability density function predicted
at a query point, with the shaded
region below ymin corresponding
to the probability of improvement.

prob_of_improvement(y_min, μ, σ) = cdf(Normal(μ, σ), y_min) Algorithm 16.1. Computing the
probability of improvement for a
given best y value y_min, mean μ,
and variance ν.

16.5 Expected Improvement Exploration

Optimization is concerned with finding the minimum of the objective function.
While maximizing the probability of improvement will tend to decrease the
objective function over time, it does not improve very much with each iteration.
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y
confidence region
true
predicted
fit points
sampled

0

1

x

P
[f
(x
)
<

y
m
in
]

x x x

Figure 16.5. Maximizing the prob-
ability of improvement selects sam-
ples most likely to produce lower
objective point values.

We can focus our exploration of points that maximize our expected improvement
over the current best function value.

Through a substitution

z =
y− µ̂

σ̂
y′min =

ymin − µ̂

σ̂
(16.7)

we can write the improvement in equation (16.4) as

I(y) =







σ̂(y′min − z) if z < y′min and σ̂ > 0

0 otherwise
(16.8)

where µ̂ and σ̂ are the predicted mean and standard deviation at the sample point
x.

We can calculate the expected improvement using the distribution predicted
by the Gaussian process:

E[I(y)] = σ̂
∫ y′min

−∞

(
y′min − z

)
N (z | 0, 1) dz (16.9)

= σ̂

[

y′min
∫ y′min

−∞
N (z | 0, 1) dz−

∫ y′min

−∞
zN (z | 0, 1) dz

]

(16.10)

= σ̂



y′minP(z ≤ y′min) +N (y′min | 0, 1)−N (−∞ | 0, 1)
︸ ︷︷ ︸

= 0



 (16.11)

= (ymin − µ̂)P(y ≤ ymin) + σ̂N (ymin | µ̂, σ̂2) (16.12)

Figure 16.6 illustrates this process using algorithm 16.2.
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function expected_improvement(y_min, μ, σ)
p_imp = prob_of_improvement(y_min, μ, σ)
p_ymin = pdf(Normal(μ, σ), y_min)
return (y_min - μ)*p_imp + σ*p_ymin

end

Algorithm 16.2. Computing the ex-
pected improvement for a given
best y value y_min, mean μ, and
standard deviation σ.

y

confidence region
true
predicted
fit points
sampled

0

1

x

E
[I
(y
)]

x x x

Figure 16.6. Maximizing the ex-
pected improvement selects sam-
pleswhich are likely to improve the
lower bound by as much as possi-
ble.

16.6 Safe Optimization

In some contexts, it may be costly to evaluate points that are deemed unsafe,
which may correspond to low performing or infeasible points. Problems such as
the in-flight tuning of the controller of a drone or safe movie recommendations
require safe exploration—searching for an optimal design point while carefully
avoiding sampling an unsafe design. x∗

ymax

x

y

Figure 16.7. SafeOpt solves safe ex-
ploration problems that minimize
f while remaining within safe re-
gions defined by maximum objec-
tive function values.

This section outlines the SafeOpt algorithm,3 which addresses a class of safe

3 Y. Sui, A. Gotovos, J. Burdick,
and A. Krause, ‘‘Safe Exploration
for Optimization with Gaussian
Processes,’’ in International Confer-
ence on Machine Learning (ICML),
vol. 37, 2015.

exploration problems. We sample a series of design points x(1), . . . , x(m) in pursuit
of a minimum but without f (x(i)) exceeding a critical safety threshold ymax. In
addition, we receive only noisy measurements of the objective function, where the
noise is zero-mean with variance ν. Such an objective function and its associated
safe regions are shown in figure 16.7.

The SafeOpt algorithm uses Gaussian process surrogate models for prediction.
At each iteration, we fit a Gaussian process to the noisy samples from f . After the
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ith sample, SafeOpt calculates the upper and lower confidence bounds:

ui(x) = µ̂i−1(x) +
√

βν̂i−1(x) (16.13)

ℓi(x) = µ̂i−1(x)−
√

βν̂i−1(x) (16.14)

where larger values of β yield wider confidence regions. Such bounds are shown
in figure 16.8.

x

confidence region
true
predicted
ℓ(x)

u(x)

fit points

Figure 16.8. An illustration of func-
tions based on the predictions of a
Gaussian process used by SafeOpt.

The Gaussian process predicts a distribution over f (x) for any design point.
Being Gaussian, these predictions can provide only a probabilistic guarantee of
safety up to an arbitrary factor:4 4 Note the similarity to the proba-

bility of improvement.

P( f (x) ≤ ymax) = Φ

(

ymax − µ̂(x)
√

ν̂(x)

)

≥ Psafe (16.15)

The predicted safe region S consists of the design points that provide a probability
of safety greater than the required level Psafe, as illustrated in figure 16.9. The safe
region can also be defined in terms of Lipschitz upper bounds constructed from
upper bounds evaluated at previously sampled points.

SafeOpt chooses a safe sample point that balances the desire to localize a
reachable minimizer of f and to expand the safe region. The set of potential
minimizers of f is denotedM (figure 16.10), and the set of points that will
potentially lead to the expansion of the safe regions is denoted E (figure 16.11).
To trade off exploration and exploitation, we choose the design point x with the
largest predictive variance among both setsM and E .5 5 For a variation of this algorithm,

see F. Berkenkamp, A. P. Schoellig,
and A. Krause, ‘‘Safe Controller
Optimization for Quadrotors with
Gaussian Processes,’’ in IEEE Inter-
national Conference on Robotics and
Automation (ICRA), 2016.

The set of potential minimizers consists of the safe points whose lower confi-
dence bound is lower than the lowest upper bound:

Mi =

{

x ∈ Si | ℓi(x) ≤ min
x′∈Si

ui(x
′)
}

(16.16)
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Figure 16.9. The safety regions
(green) predicted by a Gaussian
process.
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Figure 16.10. The potential mini-
mizers are the safe points whose
lower bounds are lower than the
best, safe upper bound.
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At step i, the set of potential expanders Ei consists of the safe points that, if
added to the Gaussian process, optimistically assuming the lower bound, produce
a posterior distribution with a larger safe set. The potential expanders naturally
lie near the boundary of the safe region.

estimated safe region S
expected expanders E

x

y

confidence region
objective function
fit points
safety threshold

Figure 16.11. The set of potential
expanders.

Given an initial safe point6 x(1), SafeOpt chooses the design point among sets 6 SafeOpt cannot guarantee safety
if it is not initialized with at least
one point that it knows is safe.M and E with the greatest uncertainty, as quantified by the width wi(x) =

u(x)− ℓ(x):
x(i) = arg max

x∈Mi
⋃ Ei

wi(x) (16.17)

SafeOpt proceeds until a termination condition is met. It is common to run the
algorithm for a fixed number of iterations or until the maximum width is less
than a set threshold.

Maintaining sets in multidimensional spaces can be computationally challeng-
ing. SafeOpt assumes a finite design spaceX that can be obtained with a sampling
method applied over the continuous search domain. Increasing the density of the
finite design space leads to more accurate results with respect to the continuous
space, but it takes longer per iteration.

SafeOpt is implemented in algorithm 16.3, and calls algorithm 16.4 to update
the predicted confidence intervals; algorithm 16.5 to compute the safe, minimizer,
and expander regions; and algorithm 16.6 to select a query point. The progression
of SafeOpt is shown for one dimension in figure 16.12, and for two dimensions in
figure 16.13.
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function safe_opt(GP, X, i, f, y_max; β=3.0, k_max=10)
push!(GP, X[i], f(X[i])) # make first observation

m = length(X)
u, l = fill(Inf, m), fill(-Inf, m)
S, M, E = falses(m), falses(m), falses(m)

for k in 1 : k_max
update_confidence_intervals!(GP, X, u, l, β)
compute_sets!(GP, S, M, E, X, u, l, y_max, β)
i = get_new_query_point(M, E, u, l)
i != 0 || break
push!(GP, X[i], f(X[i]))

end

# return the best point
update_confidence_intervals!(GP, X, u, l, β)
S[:] = u .≤ y_max
if any(S)

u_best, i_best = findmin(u[S])
i_best = findfirst(isequal(i_best), cumsum(S))
return (u_best, i_best)

else
return (NaN,0)

end
end

Algorithm 16.3. The SafeOpt algo-
rithm applied to an empty Gaus-
sian process GP, a finite design
space X, index of initial safe point
i, objective function f, and safety
threshold y_max. The optional pa-
rameters are the confidence scalar
β and the number of iterations
k_max. A tuple containing the best
safe upper bound and its index in
X is returned.

function update_confidence_intervals!(GP, X, u, l, β)
μₚ, νₚ = predict(GP, X)
u[:] = μₚ + sqrt.(β*νₚ)
l[:] = μₚ - sqrt.(β*νₚ)
return (u, l)

end

Algorithm 16.4. A method for
updating the lower and upper
bounds used in SafeOpt, which
takes the Gaussian process GP, the
finite search space X, the upper and
lower-bound vectors u and l, and
the confidence scalar β.
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function compute_sets!(GP, S, M, E, X, u, l, y_max, β)
fill!(M, false)
fill!(E, false)

# safe set
S[:] = u .≤ y_max

if any(S)

# potential minimizers
M[S] = l[S] .< minimum(u[S])

# maximum width (in M)
w_max = maximum(u[M] - l[M])

# expanders - skip values in M or those with w ≤ w_max
E[:] = S .& .~M # skip points in M
if any(E)

E[E] .= maximum(u[E] - l[E]) .> w_max
for (i,e) in enumerate(E)

if e && u[i] - l[i] > w_max
push!(GP, X[i], l[i])
μₚ, νₚ = predict(GP, X[.~S])
pop!(GP)
E[i] = any(μₚ + sqrt.(β*νₚ) .≥ y_max)
if E[i]; w_max = u[i] - l[i]; end

end
end

end
end

return (S,M,E)
end

Algorithm 16.5. A method for up-
dating the safe S, minimizer M, and
expander E sets used in SafeOpt.
The sets are all Boolean vectors in-
dicating whether the correspond-
ing design point in X is in the set.
The method also takes the Gaus-
sian process GP, the upper and
lower bounds u and l, respectively,
the safety threshold y_max, and the
confidence scalar β.
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function get_new_query_point(M, E, u, l)
ME = M .| E
if any(ME)

v = argmax(u[ME] - l[ME])
return findfirst(isequal(v), cumsum(ME))

else
return 0

end
end

Algorithm 16.6. A method for ob-
taining the next query point in
SafeOpt. The index of the point in X
with the greatest width is returned.
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estimated safe region
potential minimizers
potential expanders
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Figure 16.12. The first eight iter-
ations of SafeOpt on a univariate
function. SafeOpt can never reach
the global optimum on the right-
hand side because it requires cross-
ing an unsafe region. We can only
hope to find the global minima in
our locally reachable safe region.
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16.7 Summary

• Gaussian processes can be used to guide the optimization process using a
variety of strategies that use estimates of quantities such as the lower confidence
bound, probability of improvement, and expected improvement.

• Some problems do not allow for the evaluation of unsafe designs, in which
case we can use safe exploration strategies that rely on Gaussian processes.

16.8 Exercises

Exercise 16.1. Give an example in which prediction-based optimization fails.

Exercise 16.2. What is the main difference between lower confidence bound
exploration and error-based exploration in the context of optimization?

Exercise 16.3. We have a function f (x) = (x − 2)2/40− 0.5 with x ∈ [−5, 5],
and we have evaluation points at −1 and 1. Assume we use a Gaussian process
surrogate model with a zero-mean function, and a squared exponential kernel
exp(−r2/2), where r is the Euclidean distance between two points. Which value
for x would we evaluate next if we were maximizing probability of improvement?
Which value for x would we evaluate next if we were maximizing expected
improvement?





17 Optimization under Uncertainty

Previous chapters assumed that the optimization objective is to minimize a deter-
ministic function of our design points. In many engineering tasks, however, there
may be uncertainty in the objective function or the constraints. Uncertainty may
arise due to a number of factors, such as model approximations, imprecision, and
fluctuations of parameters over time. This chapter covers a variety of methods for
accounting for uncertainty in our optimization to enhance robustness.1 1 Additional references include:

H.-G. Beyer and B. Sendhoff,
‘‘Robust OptimOverview–A
Comprehensive Survey,’’ Computer
Methods in Applied Mechanics
and Engineering, vol. 196, no. 33,
pp. 3190–3218, 2007. G.-J. Park,
T.-H. Lee, K.H. Lee, and K.-H.
Hwang, ‘‘Robust Design: An
Overview,’’ AIAA Journal, vol. 44,
no. 1, pp. 181–191, 2006.

17.1 Uncertainty

Uncertainty in the optimization process can arise for a variety of reasons. There
may be irreducible uncertainty,2 which is inherent to the system, such as back-

2 This form of uncertainty is some-
times called aleatory uncertainty or
random uncertainty.

ground noise, varying material properties, and quantum effects. These uncertain-
ties cannot be avoided and our design should accommodate them. There may
also be epistemic uncertainty,3 which is uncertainty caused by a subjective lack of

3 Epistemic uncertainty is also
called reducible uncertainty.

knowledge by the designer. This uncertainty can arise from approximations in
the model4 used when formulating the design problem and errors introduced by

4 The statistician George Box fa-
mously wrote: All models are wrong;
some models are useful. G.E. P. Box,
W.G. Hunter, and J. S. Hunter,
Statistics for Experimenters: An Intro-
duction to Design, Data Analysis, and
Model Building, 2nd ed.Wiley, 2005.
p. 440.

numerical solution methods.
Accounting for these various forms of uncertainty is critical to ensuring robust

designs. In this chapter, we will use z ∈ Z to represent a vector of random
values. We want to minimize f (x, z), but we do not have control over z. Feasibility
depends on both the design vector x and the uncertain vector z. This chapter
introduces the feasible set over x and z pairs as F . We have feasibility if and only
if (x, z) ∈ F . We will use X as the design space, which may include potentially
infeasible designs depending on the value of z.

Optimization with uncertainty was briefly introduced in section 15.5 in the
context of using a Gaussian process to represent an objective function inferred
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from noisy measurements. We had f (x, z) = f (x) + z with the additional as-
sumption that z comes from a zero-mean Gaussian distribution.5 Uncertainty 5 Here, the two-argument version

of f takes as input the design point
and random vector, but the single-
argument version of f represents
a deterministic function of the de-
sign point without noise.

may be incorporated into the evaluation of a design point in other ways. For
example, if we had noise in the input to the objective function,6 we might have

6 For example, there may be vari-
ability in the manufacturing of our
design.

f (x, z) = f (x + z). In general, f (x, z) can be a complex, nonlinear function of x

and z. In addition, z may not come from a Gaussian distribution; in fact, it may
come from a distribution that is not known.

Figure 17.1 demonstrates how the degree of uncertainty can affect our choice
of design. For simplicity, x is a scalar and z is selected from a zero-mean Gaussian
distribution. We assume that z corresponds to noise in the input to f , and so
f (x, z) = f (x + z). The figure shows the expected value of the objective function
for different levels of noise. The global minimum without noise is a. However,
aiming for a design near a can be risky since it lies within a steep valley, making it
rather sensitive to noise. Even with low noise, it may be better to choose a design
near b. Designs near c can provide even greater robustness to larger amounts of
noise. If the noise is very high, the best design might even fall between b and c,
which corresponds to a local maximum in the absence of noise.

There are a variety of different ways to account for uncertainty in optimization.
We will discuss both set-based uncertainty and probabilistic uncertainty.7 7 Other approaches for represent-

ing uncertainty include Dempster-
Shafer theory, fuzzy-set theory, and
possibility theory, which are beyond
the scope of this book.

a b c

x

ex
pe

cte
d
va

lu
e

noise-free very low noise low noise high noise very high noise

Figure 17.1. The global minimum
at a in the noiseless case is sensitive
to noise. Other design points may
be more robust depending on the
anticipated level of noise.
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17.2 Set-Based Uncertainty

Set-based uncertainty approaches assume that z belongs to a set Z , but these
approaches make no assumptions about the relative likelihood of different points
within that set. The set Z can be defined in different ways. One way is to define
intervals for each component ofZ . Anotherway is to defineZ by a set of inequality
constraints, g(x, z) ≤ 0, similar to what was done for the design space X in
chapter 10.

17.2.1 Minimax
In problems with set-based uncertainty, we often want to minimize the maximum
possible value of the objective function. Such a minimax approach8 solves the 8 Also called the robust counterpart

approach or robust regularization.optimization problem

minimize
x∈X

maximize
z∈Z

f (x, z) (17.1)

In other words, we want to find an x that minimizes f , assuming the worst-case
value for z.

This optimization is equivalent to defining a modified objective function

fmod(x) = maximize
z∈Z

f (x, z) (17.2)

and then solving
minimize

x∈X
fmod(x) (17.3)

Example 17.1 shows this optimization on a univariate problem and illustrates the
effect of different levels of uncertainty.

In problems where we have feasibility constraints, our optimization problem
becomes

minimize
x∈X

maximize
z∈Z

f (x, z) subject to (x, z) ∈ F (17.4)

Example 17.2 shows the effect of applyingminimax on the space of feasible design
points when there are constraints.
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Consider the objective function

f (x, z) = f (x + z) = f (x̃) =







−x̃ if x̃ ≤ 0

x̃2 otherwise

where x̃ = x + z, with a set-based uncertainty region z ∈ [−ǫ, ǫ]. The mini-
max approach is aminimization problemover themodified objective function
fmod(x) = maximizez∈[−ǫ,ǫ] f (x, z).

−1 −0.5 0 0.5 1

0
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3
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x

y

true
ǫ = 0.2

ǫ = 0.4

ǫ = 0.6

ǫ = 0.8

ǫ = 1.0

ǫ = 1.2

ǫ = 1.4

ǫ = 1.6

ǫ = 1.8

ǫ = 2.0

The figure above shows fmod(x) for several different values of ǫ. The
minimum for ǫ = 0 coincides with the minimum of f (x, 0). As ǫ is increased,
the minimum first shifts right as x increases faster than x2 and then shifts
left as x2 increases faster than x. The robust minimizer does not generally
coincide with the minimum of f (x, 0).

Example 17.1. Example of a mini-
max approach to optimization un-
der set-based uncertainty.
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Consider an uncertain feasible set in the form of a rotated ellipse, where
(x, z) ∈ F if and only if z ∈ [0, π/2] and

(x1 cos z + x2 sin z)2 + (x1 sin z− x2 cos z)2/16 ≤ 1

When z = 0, the major axis of the ellipse is vertical. Increasing values of z

slowly rotates it counter clockwise to horizontal at z = π/2. The figure below
shows the vertical and horizontal ellipses and the set of all points that are
feasible for at least one z in blue.

A minimax approach to optimization should consider only design points
that are feasible under all values of z. The set of designs that are always
feasible are given by the intersection of all ellipses formed by varying z. This
set is outlined in red.

x1

x2

Example 17.2. The minimax ap-
proach applied to uncertainty in
the feasible set.
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17.2.2 Information-Gap Decision Theory
Instead of assuming the uncertainty setZ is fixed, an alternative approach known
as information-gap decision theory9 parameterizes the uncertainty set by a nonnega- 9 F.M. Hemez and Y. Ben-Haim,

‘‘Info-Gap Robustness for the Cor-
relation of Tests and Simulations of
a Non-Linear Transient,’’ Mechan-
ical Systems and Signal Processing,
vol. 18, no. 6, pp. 1443–1467, 2004.

tive scalar gap parameter ǫ. The gap controls the volume of the parameterized set
Z(ǫ) centered at some nominal value z̄ = Z(0). One way to define Z(ǫ) is as a
hypersphere of radius ǫ centered at a nominal point z̄:

Z(ǫ) = {z | ‖z− z̄‖2 ≤ ǫ} (17.5)

Figure 17.2 illustrates this definition in two dimensions.

z1

z2 ǫ
z̄

Figure 17.2. A parametrized un-
certainty set Z(ǫ) in the form of a
hypersphere.

By parameterizing the uncertainty set, we avoid committing to a particular
uncertainty set. Uncertainty sets that are too large sacrifice the quality of the
solution, and uncertainty sets that are too small sacrifice robustness. Design
points that remain feasible for larger gaps are considered more robust.

In information-gap decision theory, we try to find the design point that allows
for the largest gap while preserving feasibility. This design point can be obtained
by solving the following optimization problem:

x∗ = arg max
x∈X

maximize
ǫ∈[0,∞)







ǫ if (x, z) ∈ F for all z ∈ Z(ǫ)
0 otherwise

(17.6)

x̃1

x̃2 x∗

F

Figure 17.3. Information-gap deci-
sion theory applied to an objective
function with additive noise f (x̃)
with x̃ = x + z and a circular un-
certainty set

Z(ǫ) = {z | ‖z‖2 ≤ ǫ}
The design x∗ is optimal under
information-gap decision theory as
it allows for the largest possible ǫ
such that all x∗ + z are feasible.

This optimization focuses on finding designs that ensure feasibility in the
presence of uncertainty. In fact, equation (17.6) does not explicitly include the
objective function f . However, we can incorporate the constraint that f (x, z) be no
greater than some threshold ymax. Such performance constraints can help us avoid
excessive risk aversion. Figure 17.3 and example 17.3 illustrate the application of
information-gap decision theory.

17.3 Probabilistic Uncertainty

Models of probabilistic uncertainty uses distributions over a set Z . Probabilistic
uncertainty models provide more information than set-based uncertainty models,
allowing the designer to account for the probability of different outcomes of a
design. These distributions can be defined using expert knowledge or learned
from data. Given a distribution p over Z , we can infer a distribution over the
output of f using methods that will be discussed in chapter 18. This section will
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Consider the robust optimization of f (x, z) = x̃2 + 5e−x̃2 with x̃ = x + z

subject to the constraint x̃ ∈ [−2, 2] with the uncertainty set Z(ǫ) = [−ǫ, ǫ].
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Applying information-gap decision theory to this problem results in a
maximally-sized uncertainty set and a design centered in the suboptimal
region of the objective function. Applying an additional constraint on the
maximum objective function value, f (x, z) ≤ 5, allows the same approach to
find a design with better noise-free performance. The blue lines indicate the
worst-case objective function value for a given uncertainty parameter ǫ.

Example 17.3. We can mitigate ex-
cessive risk aversion by applying a
constraint on the maximum accept-
able objective function value when
applying information-gap decision
theory.
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outline five different metrics for converting this distribution into a scalar value
given a particular design x. We can then optimize with respect to these metrics.10 10 Further discussion of various

metrics can be found in A. Shapiro,
D. Dentcheva, and A. Ruszczyński,
Lectures on Stochastic Programming:
Modeling and Theory, 2nd ed. SIAM,
2014.

17.3.1 Expected Value
One way to convert the distribution output by f into a scalar value is to use the
expected value ormean. The expected value is the average output that we can expect
when considering all outputs of f (x, z) for all z ∈ Z and their corresponding
probabilities. The expected value as a function of the design point x is

Ez∼p[ f (x, z)] =
∫

Z
f (x, z)p(z) dz (17.7)

The expected value does not necessarily correspond to the objective function
without noise, as illustrated in example 17.4.

Computing the integral in equation (17.7) analytically may not be possible.
One may approximate that value using sampling or a variety of other more
sophisticated techniques discussed in chapter 18.

17.3.2 Variance
Besides optimizing with respect to the expected value of the function, we may
also be interested in choosing design points whose value is not overly sensitive to
uncertainty.11 Such regions can be quantified using the variance of f : 11 Sometimes designers seek

plateau-like regions where the
output of the objective function
is relatively constant, such as
producing materials with consis-
tent performance or scheduling
trains such that they arrive at a
consistent time.

Var[ f (x, z)] = Ez∼p

[(
f (x, z)−Ez∼p[ f (x, z)]

)2
]

(17.8)

=
∫

Z
f (x, z)2 p(z) dz−Ez∼p[ f (x, z)]2 (17.9)



17.3. probabilistic uncertainty 315

One commonmodel is to apply zero-meanGaussian noise to the function out-
put, f (x, z) = f (x) + z, as was the case with Gaussian processes in chapter 16.
The expected value is equivalent to the noise-free case:

Ez∼N (0,Σ)[ f (x) + z] = Ez∼N (0,Σ)[ f (x)] + Ez∼N (0,Σ)[z] = f (x)

It is also common to add noise directly to the design vector,
f (x, z) = f (x + z) = f (x̃). In such cases the expected value is affected by
the variance of zero-mean Gaussian noise.

Consider minimizing the expected value of f (x̃) = sin(2x̃)/x̃ with
x̃ = x + z for z drawn from a zero-mean Gaussian distribution N (0, ν). In-
creasing the variance increases the effect that the local function landscape
has on a design.

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

1

2

x

y

ν = 0

ν = 0.5

ν = 1.0

ν = 1.5

ν = 2.0

The plot above shows that changing the variance affects the location of
the optima.

Example 17.4. The expected value
of an uncertain objective function
depends on how the uncertainty
is incorporated into the objective
function.
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robust

sensitive

x

y

Figure 17.4. Probabilistic ap-
proaches produce probability dis-
tributions over the model output.
Design points can be sensitive or
robust to uncertainty. The blue re-
gions show how the distribution
over a normally distributed design
is affected by the objective func-
tion.

We call design points with large variance sensitive and design points with
small variance robust. Examples of sensitive and robust points are shown in
figure 17.4. We are typically interested in good points as measured by their
expected value that are also robust. Managing the trade-off between the expected
objective function value and the variance is a multiobjective optimization problem
(see example 17.5), and we can use techniques discussed in chapter 12.

17.3.3 Statistical Feasibility
An alternative metric against which to optimize is statistical feasibility. Given p(z),
we can compute the probability a design point x is feasible:

P((x, z) ∈ F ) =
∫

Z
((x, z) ∈ F )p(z) dz (17.10)

This probability can be estimated through sampling. If we are also interested
in ensuring that the objective value does not exceed a certain threshold, we can
incorporate a constraint f (x, z) ≤ ymax as is done with information-gap decision
theory. Unlike the expected value and variance metrics, we want to maximize
this metric.

17.3.4 Value at Risk
The value at risk (VaR) is the best objective value that can be guaranteed with
probability α. We can write this definition mathematically in terms of the cumula-
tive distribution function, denoted Φ(y), over the random output of the objective
function.The probability that the outcome is less than or equal to y is given by
Φ(y). VaR with confidence α is the minimum value of y such that Φ(y) ≥ α. This
definition is equivalent to the α quantile of a probability distribution. An α close to
1 is sensitive to unfavorable outliers, whereas an α close to 0 is overly optimistic
and close to the best possible outcome.

17.3.5 Conditional Value at Risk
The conditional value at risk (CVaR) is related to the value at risk.12 CVaR is the

12 The conditional value at risk
is also known as the mean ex-
cess loss, mean shortfall, and tail
value at risk. R. T. Rockafellar and
S. Uryasev, ‘‘Optimization of Con-
ditional Value-at-Risk,’’ Journal of
Risk, vol. 2, pp. 21–42, 2000.

expected value of the top 1− α quantile of the probability distribution over the
output. This quantity is illustrated in figure 17.5.
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Consider the objective function f (x, z) = x2 + z, with z drawn from aGamma
distribution that depends on x. We can construct a function dist(x) that
returns a Gamma distribution from the Distributions.jl package:

dist(x) = Gamma(2/(1+abs(x)),2)

This distribution has mean 4/(1 + |x|) and variance 8/(1 + |x|).

−3 −2 −1 0 1 2 3
0

5

10

x

y

±σ expected value

We can find a robust optimizer that minimizes both the expected value
and the variance. Minimizing with respect to the expected value, ignoring
the variance, produces two minima at x ≈ ±0.695. Incorporating a penalty
for the variance shifts these minima away from the origin. The figure below
shows objective functions of the form α E[y | x] + (1− α)

√

Var[y | x] for
α ∈ [0, 1] along with their associated minima.

−3 −2 −1 0 1 2 3

2

4

6

8

10

x

α
µ
+
(1
−

α
)σ

Example 17.5. Considering both
the expected value and the vari-
ance in optimization under uncer-
tainty.
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Figure 17.5. CVaR and VaR for a
particular level α. CVaR is the ex-
pected value of the top 1− α quan-
tile, whereas the VaR is the lowest
objective function value over the
same quantile.

CVaR has some theoretical and computational advantages over VaR. CVaR is
less sensitive to estimation errors in the distribution over the objective output.
For example, if the cumulative distribution function is flat in some intervals, then
VaR can jump with small changes in α. In addition, VaR does not account for costs
beyond the α quantile, which is undesirable if there are rare outliers with very
poor objective values.13 13 For an overview of properties,

see G.C. Pflug, ‘‘Some Remarks
on the Value-at-Risk and the
Conditional Value-at-Risk,’’ in
Probabilistic Constrained Optimiza-
tion: Methodology and Applications,
S. P. Uryasev, ed. Springer, 2000,
pp. 272–281. and R. T. Rockafellar
and S. Uryasev, ‘‘Conditional
Value-at-Risk for General Loss
Distributions,’’ Journal of Banking
and Finance, vol. 26, pp. 1443–1471,
2002.

17.4 Summary

• Uncertainty in the optimization process can arise due to errors in the data, the
models, or the optimization method itself.

• Accounting for these sources of uncertainty is important in ensuring robust
designs.

• Optimization with respect to set-based uncertainty includes the minimax ap-
proach that assumes the worst-case and information-gap decision theory that
finds a design robust to a maximally sized uncertainty set.

• Probabilistic approaches typically minimize the expected value, the variance,
risk of infeasibility, value at risk, conditional value at risk, or a combination of
these.

17.5 Exercises

Exercise 17.1. Suppose we have zero-mean Gaussian noise in the input such that
f (x, z) = f (x + z). Consider the three points a, b, and c in the figure below:
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a b c

x

y

Which design point is best if we are minimizing the expected value minus the
standard deviation?

Exercise 17.2. Optima, such as the one depicted in figure 17.6, often lie on a
constraint boundary and are thus sensitive to uncertainties that could cause them
to become infeasible. One approach to overcome uncertainty with respect to
feasibility is to make the constraints more stringent, reducing the size of the
feasible region as shown in figure 17.7.

x

y

x∗

X

g(x) ≤ 0

Figure 17.6. Optima with active
constraints are often sensitive to
uncertainty.

x1

x2

x1

x2

Figure 17.7. Applying more strin-
gent constraints during optimiza-
tion prevents designs from being
too close to the true feasibility
boundary.

It is common to rewrite constraints of the form g(x) ≤ gmax to γg(x) ≤ gmax,
where γ > 1 is a factor of safety. Optimizing such that the constraint values stay
below gmax/γ provides an additional safety buffer.

Consider a beam with a square cross section thought to fail when the stresses
exceed σmax = 1. We wish to minimize the cross section f (x) = x2, where x is the
cross section length. The stress in the beam is also a function of the cross section
length g(x) = x−2. Plot the probability that the optimized design does not fail as
the factor of safety varies from 1 to 2:

• Uncertainty in maximum stress, g(x, z) = x−2 + z

• Uncertainty in construction tolerance, g(x, z) = (x + z)−2
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• Uncertainty in material properties, g(x, z) = (1 + z)x−2

where z is zero-mean noise with variance 0.01.

Exercise 17.3. The six-sigma method is a special case of statistical feasibility in
which a production or industrial process is improved until its assumed Gaussian
output violates design requirements only with outliers that exceed six standard
deviations. This requirement is fairly demanding, as is illustrated in figure 17.8.

feasibility boundary

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

number of standard deviations from the mean

N
(x
|µ

,σ
)

Figure 17.8. Statistical feasibility
can be met either by shifting the
objective function mean away from
the feasibility boundary or by re-
ducing the variance of the objective
function.

Consider the optimization problem

minimize
x

x1

subject to ex1 ≤ x2 + z ≤ 2ex1

with z ∼ N (0, 1). Find the optimal design x∗ such that (x, z) is feasible for all
|z| ≤ 6.



18 Uncertainty Propagation

As discussed in the previous chapter, probabilistic approaches to optimization un-
der uncertainty model some of the inputs to the objective function as a probability
distribution. This chapter discusses how to propagate known input distributions
to estimate quantities associated with the output distribution, such as the mean
and variance of the objective function. There are a variety of approaches to uncer-
tainty propagation, some based on mathematical concepts such as Monte Carlo, the
Taylor series approximation, orthogonal polynomials, and Gaussian processes.
These approaches differ in the assumptions they make and the quality of their
estimates.

18.1 Sampling Methods

The mean and variance of the objective function at a particular design point can
be approximated using Monte Carlo integration,1 which approximates the integral 1 Alternatively, quasi Monte Carlo

integration can be used to produce
estimates with faster convergence
as discussed in chapter 13.

using m samples z(1), . . . , z(m), from the distribution p over Z . These estimates
are also called the sample mean and sample variance:

Ez∼p[ f (z)] ≈ µ̂ =
1

m

m

∑
i=1

f (z(i)) (18.1)

Varz∼p[ f (z)] ≈ ν̂ =

(

1

m

m

∑
i=1

f (z(i))2

)

− µ̂2 (18.2)

In the equation above, and for the rest of this chapter, we drop x from f (x, z) for
notational convenience, but the dependency on x still exists. For each new design
point x in our optimization process, we recompute the mean and variance.
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A desirable property of this sampling-based approach is that p does not need
to be known exactly.We can obtain samples directly from simulation or real-world
experiments. A potential limitation of this approach is that many samples may
be required before there is convergence to a suitable estimate. The variance of
the sample mean for a normally distributed f is Var[µ̂] = ν/m, where ν is the
true variance of f . Thus, doubling the number of samples m tends to halve the
variance of the sample mean.

18.2 Taylor Approximation

Another way to estimate µ̂ and ν̂ is to use the Taylor series approximation for f at
a fixed design point x.2 For the moment, we will assume that the n components 2 For a derivation of the mean and

variance of a general function of n
random variables, see H. Benaroya
and S.M. Han, Probability Models
in Engineering and Science. Taylor &
Francis, 2005.

of z are independent and have finite variance. We will denote the mean of the
distribution over z as µ and the variances of the individual components of z as
ν.3 The following is the second-order Taylor series approximation of f (z) at the

3 If the components of z are inde-
pendent, then the covariance ma-
trix is diagonal and νwould be the
vector composed of the diagonal
elements.

point z = µ:

f̂ (z) = f (µ) +
n

∑
i=1

∂ f

∂zi
(zi − µi) +

1

2

n

∑
i=1

n

∑
j=1

∂2 f

∂zi∂zj
(zi − µi)(zj − µj) (18.3)

From this approximation, we can analytically compute estimates of the mean
and variance of f :

µ̂ = f (µ) +
1

2

n

∑
i=1

∂2 f

∂z2
i

νi

∣
∣
∣
∣
z=µ

(18.4)

ν̂ =
n

∑
i=1

(
∂ f

∂zi

)2

νi +
1

2

n

∑
i=1

n

∑
j=1

(

∂2 f

∂zi∂zj

)2

νiνj

∣
∣
∣
∣
z=µ

(18.5)

The higher-order terms can be neglected to obtain a first-order approximation:

µ̂ = f (µ) ν̂ =
n

∑
i=1

(
∂ f

∂zi

)2

νi

∣
∣
∣
∣
z=µ

(18.6)

We can relax the assumption that the components of z are independent, but it
makes the mathematics more complex. In practice, it can be easier to transform
the random variables so that they are independent. We can transform a vector of
n correlated random variables c with covariance matrix C into m uncorrelated
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random variables z by multiplying by an orthogonal m× n matrix T containing
the eigenvectors corresponding to the m largest eigenvalues of C. We have z = Tc.4 4 It is also common to scale the out-

puts such that the covariance ma-
trix becomes the identity matrix.
This process is known as whitening.
J.H. Friedman, ‘‘Exploratory Pro-
jection Pursuit,’’ Journal of the Amer-
ican Statistical Association, vol. 82,
no. 397, pp. 249–266, 1987.

The Taylor approximation method is implemented in algorithm 18.1. First- and
second-order approximations are compared in example 18.1.

using ForwardDiff
function taylor_approx(f, μ, ν, secondorder=false)

μhat = f(μ)
∇ = (z -> ForwardDiff.gradient(f, z))(μ)
νhat = ∇.^2⋅ν
if secondorder

H = (z -> ForwardDiff.hessian(f, z))(μ)
μhat += (diag(H)⋅ν)/2
νhat += ν⋅(H.^2*ν)/2

end
return (μhat, νhat)

end

Algorithm 18.1. A method for
automatically computing the Tay-
lor approximation of the mean
and variance of objective func-
tion f at design point x with
noise mean vector μ and variance
vector ν. The Boolean parameter
secondorder controls whether the
first- or second-order approxima-
tion is computed.

18.3 Polynomial Chaos

Polynomial chaos is a method for fitting a polynomial to evaluations of f (z) and
using the resulting surrogate model to estimate the mean and variance. We will
begin this section by discussing how polynomial chaos is used in the univariate
case. We will then generalize the concept to multivariate functions and show
how to obtain estimates of the mean and variance by integrating the function
represented by our surrogate model.

18.3.1 Univariate
In one dimension, we approximate f (z) with a surrogate model consisting of k

polynomial basis functions, b1, . . . , bk:

f (z) ≈ f̂ (z) =
k

∑
i=1

θibi(z) (18.7)
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Consider the objective function f (x, z) = sin(x + z1) cos(x + z2), where z1

and z2 are zero-mean Gaussian noise with variances 0.1 and 0.2, respectively.
The first and second partial derivatives of f with respect to the zs are

∂ f

∂z1
= cos(x + z1) cos(x + z2)

∂2 f

∂z2
2

= − sin(x + z1) cos(x + z2)

∂ f

∂z2
= − sin(x + z1) sin(x + z2)

∂2 f

∂z1∂z2
= − cos(x + z1) sin(x + z2)

∂2 f

∂z2
1

= − sin(x + z1) cos(x + z2)

which allow us to construct the Taylor approximation:

µ̂(x) = 0.85 sin(x) cos(x)

ν̂(x) = 0.3 sin2(x) cos2(x)− 0.035 sin(x) cos(x)

We can use taylor_approx for a given x using:
taylor_approx(z->sin(x+z[1])*cos(x+z[2]), [0,0], [0.1,0.2])

−0.5

0

0.5

m
ea

n

−3 −2 −1 0 1 2 3
0

0.05
0.1

0.15
0.2

x

va
ria

nc
e

true first-order Taylor approx. second-order Taylor approx.

Example 18.1. The Taylor ap-
proximation applied to a univari-
ate design problem with two-
dimensional Gaussian noise.



18.3. polynomial chaos 325

In contrast with the Monte Carlo methods discussed in section 18.1, our samples
of z do not have to be randomly drawn from p. In fact, it may be desirable to
obtain samples using one of the sampling plans discussed in chapter 13. We will
discuss how to obtain the basis coefficients in section 18.3.2.

We can use the surrogate model f̂ to estimate the mean:

µ̂ = E
[

f̂
]

(18.8)

=
∫

Z
f̂ (z)p(z) dz (18.9)

=
∫

Z

k

∑
i=1

θibi(z)p(z) dz (18.10)

=
k

∑
i=1

θi

∫

Z
bi(z)p(z) dz (18.11)

= θ1

∫

Z
b1(z)p(z) dz + . . . + θk

∫

Z
bk(z)p(z) dz (18.12)

We can also estimate the variance:

ν̂ = E

[(

f̂ −E
[

f̂
])2
]

(18.13)

= E
[

f̂ 2
]

−E
[

f̂
]2

(18.14)

=
∫

Z
f̂ (z)2 p(z) dz− µ2 (18.15)

=
∫

Z

k

∑
i=1

k

∑
j=1

θiθjbi(z)bj(z)p(z) dz− µ2 (18.16)

=
∫

Z

(
k

∑
i=1

θ2
i bi(z)

2 + 2
k

∑
i=2

i−1

∑
j=1

θiθjbi(z)bj(z)

)

p(z) dz− µ2 (18.17)

=
∫

Z

(
k

∑
i=1

θ2
i bi(z)

2 + 2
k

∑
i=2

i−1

∑
j=1

θiθjbi(z)bj(z)

)

p(z) dz− µ2 (18.18)

=
k

∑
i=1

θ2
i

∫

Z
bi(z)

2 p(z) dz + 2
k

∑
i=2

i−1

∑
j=1

θiθj

∫

Z
bi(z)bj(z)p(z) dz− µ2 (18.19)

The mean and variance can be efficiently computed if the basis functions are
chosen to be orthogonal under p. Two basis functions bi and bj are orthogonal with
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respect to a probability density p(z) if
∫

Z
bi(z)bj(z)p(z) dz = 0 if i 6= j (18.20)

If the chosen basis functions are all orthogonal to one another and the first
basis function is b1(z) = 1, the mean is:

µ̂ = θ1

∫

Z
b1(z)p(z) dz + θ2

∫

Z
b2(z)p(z) dz + · · ·+ θk

∫

Z
bk(z)p(z) dz (18.21)

= θ1

∫

Z
b1(z)

2 p(z) dz + θ2

∫

Z
b1(z)b2(z)p(z) dz + · · ·+ θk

∫

Z
b1(z)bk(z)p(z) dz (18.22)

= θ1

∫

Z
p(z) dz + 0 + · · ·+ 0 (18.23)

= θ1 (18.24)

Similarly, the variance is:

ν̂ =
k

∑
i=1

θ2
i

∫

Z
bi(z)

2 p(z) dz + 2
k

∑
i=2

i−1

∑
j=1

θiθj

∫

Z
bi(z)bj(z)p(z) dz− µ2 (18.25)

=
k

∑
i=1

θ2
i

∫

Z
bi(z)

2 p(z) dz− µ2 (18.26)

= θ2
1

∫

Z
b1(z)

2 p(z) dz +
k

∑
i=2

θ2
i

∫

Z
bi(z)

2 p(z) dz− θ2
1 (18.27)

=
k

∑
i=2

θ2
i

∫

Z
bi(z)

2 p(z) dz (18.28)

The mean thus falls immediately from fitting a surrogate model to the ob-
served data, and the variance can be very efficiently computed given the values
∫

Z bi(z)
2 p(z) dz for a choice of basis functions and probability distribution.5 Ex- 5 Integrals of this form can be ef-

ficiently computed using Gaus-
sian quadrature, covered in ap-
pendix C.8.

ample 18.2 uses these procedures to estimate themean and variance with different
sample sizes.

Polynomial chaos approximates the function using kth degree orthogonal
polynomial basis functions with i ∈ {1, . . . , k + 1} and b1 = 1. All orthogonal
polynomials satisfy the recurrence relation:

bi+1(z) =







(z− αi)bi(z) for i = 1

(z− αi)bi(z)− βibi−1(z) for i > 1
(18.29)
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Consider optimizing the (unknown) objective function

f (x, z) = 1− e−(x+z−1)2 − 2e−(x+z−3)2

with z known to be drawn from a zero-mean unit-Gaussian distribution.
The objective function, its true expected value, and estimated expected

valueswith different sample counts are plotted below. The estimated expected
value is computed using third-order Hermite polynomials.

−1

0

1

10 samplesE
[f
|x

] noise-free
exact
95% interval
mean

−1

0

1

30 samplesE
[f
|x

]

−2 −1 0 1 2 3 4 5 6

−1

0

1

50 samples

x

E
[f
|x

]

Example 18.2. Estimating the ex-
pected value of an unknown ob-
jective function using polynomial
chaos.
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with b1(z) = 1 and weights

αi =

∫

Z z bi(z)
2 p(z) dz

∫

Z bi(z)2 p(z) dz

βi =

∫

Z bi(z)
2 p(z) dz

∫

Z bi−1(z)2 p(z) dz

(18.30)

The recurrence relation can be used to generate the basis functions. Each basis
function bi is a polynomial of degree i− 1. The basis functions for several com-
mon probability distributions are given in table 18.1, can be generated using the
methods in algorithm 18.2, and are plotted in figure 18.1. Example 18.3 illustrates
the effect the polynomial order has on the estimates of the mean and variance.

Distribution Domain Density Name Recursive Form Closed Form

Uniform [−1, 1] 1
2 Legendre Lek(x) = 1

2kk!
dk

dxk

[(
x2 − 1

)k
]

bi(x) =
i−1

∑
j=0

(
i− 1

j

)(−i− 2

j

)(
1− x

2

)j

Exponential [0, ∞) e−x Laguerre d
dx Lak(x) =

(
d

dx − 1
)

Lak−1 bi(x) =
i−1

∑
j=0

(
i− 1

j

)
(−1)j

j!
xj

Unit Gaussian (−∞, ∞) 1√
2π

e−x2/2 Hermite Hk(x) = xHk−1 − d
dx Hk−1 bi(x) =

⌊(i−1)/2⌋
∑
j=0

(i− 1)!
(−1)

i−1
2 −j

(2j)!( i−1
2 − j)!

(2x)2j

Table 18.1. Orthogonal polynomial
basis functions for several common
probability distributions.

Basis functions for arbitrary probability density functions and domains can
be constructed both analytically and numerically.6 The Stieltjes algorithm7 (al-

6 The polynomials can be scaled by
a nonzero factor. It is convention to
set b1(x) = 1.
7 T. J. Stieltjes, ‘‘Quelques Recher-
ches sur la Théorie des Quad-
ratures Dites Mécaniques,’’ An-
nales Scientifiques de l’École Normale
Supérieure, vol. 1, pp. 409–426, 1884.
in French. An overview in English
is provided byW. Gautschi,Orthog-
onal Polynomials: Computation and
Approximation. Oxford University
Press, 2004.

gorithm 18.3) generates orthogonal polynomials using the recurrence relation
in equation (18.29). Example 18.4 shows how the polynomial order affects the
estimates of the mean and variance.

18.3.2 Coefficients
The coefficients θ1, . . . , θk in equation (18.7) can be inferred in two different ways.
The first way is to fit the values of the samples from Z using the linear regression
method discussed in section 14.3. The second way is to exploit the orthogonality
of the basis functions, producing an integration term amenable to Gaussian
quadrature.
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using Polynomials
function legendre(i)

n = i-1
p = Poly([-1,0,1])^n
for i in 1 : n

p = polyder(p)
end
return p / (2^n * factorial(n))

end
function laguerre(i)

p = Poly([1])
for j in 2 : i

p = polyint(polyder(p) - p) + 1
end
return p

end
function hermite(i)

p = Poly([1])
x = Poly([0,1])
for j in 2 : i

p = x*p - polyder(p)
end
return p

end

Algorithm 18.2. Methods for con-
structing polynomial orthogonal
basis functions, where i indicates
the construction of bi .
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Figure 18.1. Orthogonal basis func-
tions for uniform, exponential, and
unit Gaussian distributions.
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Consider the function f (z) = sin(πz) with input z drawn from a uniform
distribution over the domain [−1, 1]. The true mean and variance can be
computed analytically:

µ =
∫ b

a
f (z)p(z) dz =

∫ 1

−1
sin(πz)

1

2
dz = 0 (18.31)

ν =
∫ b

a
f (z)2 p(z) dz− µ2 =

∫ 1

−1
sin2(πz)

1

2
dz− 0 =

1

2
(18.32)

Suppose we have five samples of f at z = {−1,−0.2, 0.3, 0.7, 0.9}. We
can fit a Legendre polynomial to the data to obtain our surrogate model f̂ .
Polynomials of different degrees yield:

−1 −0.5 0 0.5 1

−1

0

1

z

true
i = 1 µ = +0.268 ν = 0.000

i = 2 µ = +0.207 ν = 0.063

i = 3 µ = +0.170 ν = 0.075

i = 4 µ = −0.056 ν = 0.573

i = 5 µ = −0.136 ν = 0.757

Example 18.3. Legendre polynomi-
als used to estimate the mean and
variance of a function with a uni-
formly distributed input.
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using Polynomials
function orthogonal_recurrence(bs, p, dom, ϵ=1e-6)

i = length(bs)
c1 = quadgk(z->z*bs[i](z)^2*p(z), dom..., atol=ϵ)[1]
c2 = quadgk(z-> bs[i](z)^2*p(z), dom..., atol=ϵ)[1]
α = c1 / c2
if i > 1

c3 = quadgk(z->bs[i-1](z)^2*p(z), dom..., atol=ϵ)[1]
β = c2 / c3
return Poly([-α, 1])*bs[i] - β*bs[i-1]

else
return Poly([-α, 1])*bs[i]

end
end

Algorithm 18.3. The Stieltjes al-
gorithm for constructing the next
polynomial basis function bi+1 ac-
cording to the orthogonal recur-
rence relation, where bs contains
{b1, . . . , bi}, p is the probability dis-
tribution, and dom is a tuple con-
taining a lower and upper bound
for z. The optional parameter ϵ con-
trols the absolute tolerance of the
numerical integration. We make
use of the Polynomials.jl pack-
age.

We multiply each side of equation (18.7) by the jth basis and our probability
density function and integrate:

f (z) ≈
k

∑
i=1

θibi(z) (18.33)

∫

Z
f (z)bj(z)p(z) dz ≈

∫

Z

(
k

∑
i=1

θibi(z)

)

bj(z)p(z) dz (18.34)

=
k

∑
i=1

θi

∫

Z
bi(z)bj(z)p(z) dz (18.35)

= θj

∫

Z
bj(z)

2 p(z) dz (18.36)

where we made use of the orthogonality property from equation (18.20).
It follows that the jth coefficient is:

θj =

∫

Z f (z)bj(z)p(z) dz
∫

Z bj(z)2 p(z) dz
(18.37)

The denominator of equation (18.37) typically has a known analytic solution
or can be inexpensively precomputed. Calculating the coefficient thus primarily
requires solving the integral in the numerator, which can be done numerically
using Gaussian quadrature.8

8 Gaussian quadrature is imple-
mented in QuadGK.jl via the
quadgk function, and is covered in
appendix C.8. Quadrature rules
can also be obtained using the
eigenvalues and eigenvectors of a
tri-diagonal matrix formed using
the coefficients αi and βi from
equation (18.30). G.H. Golub and
J.H. Welsch, ‘‘Calculation of Gauss
Quadrature Rules,’’ Mathematics
of Computation, vol. 23, no. 106,
pp. 221–230, 1969.
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Consider the function f (z) = sin(πz) with input z drawn a truncated Gaus-
sian distribution with mean 3 and variance 1 over the domain [2, 5]. The true
mean and variance are:

µ =
∫ b

a
f (z)p(z) dz =

∫ 5

2
sin(πz)p(z) dz ≈ 0.104

ν =
∫ b

a
f (z)2 p(z) dz− µ2 =

∫ 5

2
sin2(πz)p(z) dz− 0.1042 ≈ 0.495

where the probability density of the truncated Gaussian is:

p(z) =







N (z|3,1)
∫ 5

2 N (τ|3,1) dτ
if z ∈ [2, 5]

0 otherwise

Suppose we have five samples of f at z = {2.1, 2.5, 3.3, 3.9, 4.7}. We can
fit orthogonal polynomials to the data to obtain our surrogate model f̂ .
Polynomials of different degrees yield:

2 3 4 5

−1

0

1

2

z

true
i = 1 µ = +0.200 ν = 0.000

i = 2 µ = +0.204 ν = 0.001

i = 3 µ = −0.036 ν = 0.159

i = 4 µ = +0.037 ν = 0.273

i = 5 µ = +0.055 ν = 0.478

Example 18.4. Legendre polynomi-
als constructed using the Stieltjes
method to estimate the mean and
variance of a function with a ran-
dom variable input.
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18.3.3 Multivariate
Polynomial chaos can be applied to functions with multiple random inputs. Mul-
tivariate basis functions over m variables are constructed as a product over uni-
variate orthogonal polynomials:

bi(z) =
m

∏
j=1

baj
(zj) (18.38)

where a is an assignment vector that assigns the ajth basis function to the jth
random component. This basis function construction is demonstrated in exam-
ple 18.5.

Consider a three-dimensional polynomial chaos model of which one of the
multidimensional basis functions is b(z) = b3(z1)b1(z2)b3(z3). The corre-
sponding assignment vector is a = [3, 1, 3].

Example 18.5. Constructing a mul-
tivariate polynomial chaos basis
function using equation (18.38).

A common method for constructing multivariate basis functions is to generate
univariate orthogonal polynomials for each random variable and then to construct
a multivariate basis function for every possible combination.9 This procedure 9 Here the number of multivariate

exponential basis functions grows
exponentially in the number of
variables.

is implemented in algorithm 18.4. Constructing basis functions in this manner
assumes that the variables are independent. Interdependence can be resolved
using the same transformation discussed in section 18.2.

function polynomial_chaos_bases(bases1d)
bases = []
for a in product(bases1d...)

push!(bases,
z -> prod(b(z[i]) for (i,b) in enumerate(a)))

end
return bases

end

Algorithm 18.4. A method for con-
structing multivariate basis func-
tions where bases1d contains lists
of univariate orthogonal basis func-
tions for each random variable.

A multivariate polynomial chaos approximation with k basis functions is still
a linear combination of terms

f (z) ≈ f̂ (z) =
k

∑
i=1

θibi(z) (18.39)



334 chapter 18. uncertainty propagation

where the mean and variance can be computed using the equations in sec-
tion 18.3.1, provided that b1(z) = 1.

18.4 Bayesian Monte Carlo

Gaussian processes, covered in chapter 16, are probability distributions over
functions. They can be used as surrogates for stochastic objective functions.We can
incorporate prior information, such as the expected smoothness of the objective
function, in a process known as Bayesian Monte Carlo or Bayes-Hermite Quadrature.

Consider a Gaussian process fit to several points with the same value for
the design point x but different values for the uncertain point z. The Gaussian
process obtained is a distribution over functions based on the observed data.
When obtaining the expected value through integration, we must consider the
expected value of the functions in the probability distribution represented by the
Gaussian process p( f̂ ):

Ez∼p[ f ] ≈ E f̂∼p( f̂ )[ f̂ ] (18.40)

=
∫

F̂

(∫

Z
f̂ (z)p(z) dz

)

p( f̂ ) d f̂ (18.41)

=
∫

Z

(∫

F̂
f̂ (z)p( f̂ ) d f̂

)

p(z) dz (18.42)

=
∫

Z
µ̂(z)p(z) dz (18.43)

where µ̂(z) is the predicted mean under the Gaussian process and F̂ is the space
of functions. The variance of the estimate is

Varz∼p[ f ] ≈ Var f̂∼p( f̂ )[ f̂ ] (18.44)

=
∫

F̂

(∫

Z
f̂ (z)p(z) dz−

∫

Z
E[ f̂ (z′)]p(z′) dz′

)2

p( f̂ ) d f̂ (18.45)

=
∫

Z

∫

Z

∫

F̂

[

f̂ (z)−E[ f̂ (z)]
][

f̂ (z′)−E[ f̂ (z′)]
]

p( f̂ ) d f̂ p(z)p(z′) dz dz′ (18.46)

=
∫

Z

∫

Z
Cov( f̂ (z), f̂ (z′))p(z)p(z′) dz dz′ (18.47)

where Cov is the posterior covariance under the Gaussian process:

Cov( f̂ (z), f̂ (z′)) = k(z, z′)− k(z, Z)K(Z, Z)−1k(Z, z′) (18.48)
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where Z contains the observed inputs.
Analytic expressions exist for the mean and variance for the special case where

z is Gaussian.10 Under a Gaussian kernel, 10 It is also required that the covari-
ance function obey the product cor-
relation rule, that is, it can be writ-
ten as the product of a univariate
positive-definite function r:

k(x, x′) =
n

∏
i=1

r(xi − x′i)

Analytic results exist for poly-
nomial kernels and mixtures of
Gaussians. C. E. Rasmussen and
Z. Ghahramani, ‘‘Bayesian Monte
Carlo,’’ in Advances in Neural Infor-
mation Processing Systems (NIPS),
2003.

k(x, x′) = exp

(

−1

2

n

∑
i=1

(
xi − x′i

)2

w2
i

)

(18.49)

the mean for Gaussian uncertainty z ∼ N (µz, Σz) is

Ez∼p[ f ] = q⊤K−1y (18.50)

with

qi = |W−1
Σz + I|−1/2 exp

(

−1

2

(

µz − µ̂(z(i))
)⊤

(Σz + W)−1
(

µz − z(i)
))

(18.51)
where W = diag[w2

1, . . . , w2
n], and we have constructed our Gaussian process

using samples (z(i), yi) for i ∈ {1, . . . , m}.11 11 See A. Girard, C. E. Ras-
mussen, J. Q. Candela, and R.
Murray-Smith, ‘‘Gaussian Process
Priors with Uncertain Inputs—
Application to Multiple-Step
Ahead Time Series Forecasting,’’
in Advances in Neural Information
Processing Systems (NIPS), 2003.

The variance is

Varz∼p[ f ] = |2W−1
Σz + I|−1/2 − q⊤K−1q (18.52)

Even when the analytic expressions are not available, there are many problems
for which numerically evaluating the expectation is sufficiently inexpensive that
the Gaussian process approach is better than a Monte Carlo estimation.

Bayesian Monte Carlo is implemented in algorithm 18.5 and is worked out in
example 18.6.

function bayesian_monte_carlo(GP, w, μz, Σz)
W = Matrix(Diagonal(w.^2))
invK = inv(K(GP.X, GP.X, GP.k))
q = [exp(-((z-μz)⋅(inv(W+Σz)*(z-μz)))/2) for z in GP.X]
q .*= (det(W\Σz + I))^(-0.5)
μ = q'*invK*GP.y
ν = (det(2W\Σz + I))^(-0.5) - (q'*invK*q)[1]
return (μ, ν)

end

Algorithm 18.5. A method for ob-
taining the Bayesian Monte Carlo
estimate for the expected value of
a function under a Gaussian pro-
cess GPwith aGaussian kernelwith
weights w, where the variables are
drawn from a normal distribution
with mean μz and covariance Σz.
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Consider again estimating the expected value and variance of f (x, z) =

sin(x + z1) cos(x + z2), where z1 and z2 are zero-mean Gaussian noise with
variances 1 and 1/2, respectively: µz = [0, 0] and Σz = diag([1, 1/2]).

We use Bayesian Monte Carlo with a Gaussian kernel with unit weights
w = [1, 1] for x = 0 with samples Z = {[0, 0], [1, 0], [−1, 0], [0, 1], [0,−1]}.

We compute:

W =

[

1 0

0 1

]

K =










1 0.607 0.607 0.607 0.607

0.607 1 0.135 0.368 0.368

0.607 0.135 1 0.368 0.368

0.607 0.368 0.368 1 0.135

0.607 0.368 0.368 0.135 1










q = [0.577, 0.4500.450, 0.417, 0.417]

Ez∼p[ f ] = 0.0

Varz∼p[ f ] = 0.327

Below we plot the expected value as a function of x using the same ap-
proach with ten random samples of z at each point.

−2 −1 0 1 2

−0.5

0

0.5

x

E
[f
|x

]

true
sample mean
Bayesian MC

Example 18.6. An example of using
Bayesian Monte Carlo to estimate
the expected value and variance of
a function.

The figure compares the
Bayesian Monte Carlo method to
the samplemean for estimating the
expected value of a function. The
same randomly sampled z values
generated for each evaluated x
were input to each method.
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18.5 Summary

• The expected value and variance of the objective function are useful when
optimizing problems involving uncertainty, but computing these quantities
reliably can be challenging.

• One of the simplest approaches is to estimate the moments using sampling in
a process known as Monte Carlo integration.

• Other approaches, such as the Taylor approximation, use knowledge of the
objective function’s partial derivatives.

• Polynomial chaos is a powerful uncertainty propagation technique based on
orthogonal polynomials.

• Bayesian Monte Carlo uses Gaussian processes to efficiently arrive at the mo-
ments with analytic results for Gaussian kernels.

18.6 Exercises

Exercise 18.1. Supposewe draw a sample from a univariate Gaussian distribution.
What is the probability that our sample falls within one standard deviation of the
mean (x ∈ [µ− σ, µ + σ])? What is the probability that our sample is less than
one standard deviation above the mean (x < µ + σ)?

Exercise 18.2. Let x(1), x(2), . . . , x(m) be a random sample of independent, identi-
cally distributed values of size m from a distribution with mean µ and variance ν.
Show that the variance of the sample mean Var(µ̂) is ν/m.

Exercise 18.3. Derive the recurrence relation equation (18.29) that is satisfied by
all orthogonal polynomials.

Exercise 18.4. Suppose we have fitted a polynomial chaos model of an objec-
tive function f (x, z) for a particular design point x using m evaluations with
z(1), . . . , z(m). Derive an expression for estimating the partial derivative of the
polynomial chaos coefficients with respect to a design component xi.



338 chapter 18. uncertainty propagation

Exercise 18.5. Consider an objective function f (x, z) with design variables x and
random variables z. As discussed in chapter 17, optimization under uncertainty
often involves minimizing a linear combination of the estimated mean and vari-
ance:

fmod(x, z) = αµ̂(x) + (1− α)ν̂(x)

How can one use polynomial chaos to estimate the gradient of fmod with
respect to a design variable x?



19 Discrete Optimization

Previous chapters have focused on optimizing problems involving design vari-
ables that are continuous. Many problems, however, have design variables that
are naturally discrete, such as manufacturing problems involving mechanical
components that come in fixed sizes or navigation problems involving choices be-
tween discrete paths. A discrete optimization problem has constraints such that the
design variables must be chosen from a discrete set. Some discrete optimization
problems have infinite design spaces, and others are finite.1 Even for finite prob- 1 Discrete optimizationwith a finite

design space is sometimes referred
to as combinatorial optimization. For
a review, see B. Korte and J. Vygen,
Combinatorial Optimization: Theory
and Algorithms, 5th ed. Springer,
2012.

lems, where we could in theory enumerate every possible solution, it is generally
not computationally feasible to do so in practice. This chapter discusses both
exact and approximate approaches to solving discrete optimization problems
that avoid enumeration. Many of the methods covered earlier, such as simulated
annealing and genetic programming, can easily be adapted for discrete optimiza-
tion problems, but we will focus this chapter on categories of techniques we have
not yet discussed.

Discrete optimization constrains the design to be integral. Consider the
problem:

minimize
x

x1 + x2

subject to ‖x‖ ≤ 2

x is integral

The optimum in the continuous case is x∗ = [−
√

2,−
√

2] with a value of
y = −2

√
2 ≈ −2.828. If x1 and x2 are constrained to be integer-valued, then

the best we can do is to have y = −2 with x∗ ∈ {[−2, 0], [−1,−1], [0,−2]}.

Example 19.1. Discrete versions
of problems constrain the solu-
tion, often resulting in worse solu-
tions than their continuous coun-
terparts.

−2 0 2

−2

0

2

x1

x
2
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19.1 Integer Programs

An integer program is a linear program2 with integral constraints. By integral 2 See chapter 11.
constraints, wemean that the design variablesmust come from the set of integers.3 3 Integer programming is a very

mature field, with applications
in operations research, commu-
nications networks, task schedul-
ing, and other disciplines. Mod-
ern solvers, such as Gurobi and
CPLEX, can routinely handle prob-
lems with millions of variables.
There are packages for Julia that
provide access to Gurobi, CPLEX,
and a variety of other solvers.

Integer programs are sometimes referred to as integer linear programs to emphasize
the assumption that the objective function and constraints are linear.

An integer program in standard form is expressed as:

minimize
x

c⊤x

subject to Ax ≤ b

x ≥ 0

x ∈ Zn

(19.1)

where Zn is the set of n-dimensional integral vectors.
Like linear programs, integer programs are often solved in equality form. Trans-

forming an integer program to equality form often requires adding additional
slack variables s that do not need to be integral. Thus, the equality form for
integral programs is:

minimize
x

c⊤x

subject to Ax + s = b

x ≥ 0

s ≥ 0

x ∈ Zn

(19.2)

More generally, a mixed integer program (algorithm 19.1) includes both con-
tinuous and discrete design components. Such a problem, in equality form, is
expressed as:

minimize
x

c⊤x

subject to Ax = b

x ≥ 0

xD ∈ Z‖D‖

(19.3)

where D is a set of indices into the design variables that are constrained to be
discrete. Here, x = [xD , xC ], where xD represents the vector of discrete design
variables and xC the vector of continuous design variables.
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mutable struct MixedIntegerProgram
A
b
c
D

end

Algorithm 19.1. A mixed integer
linear program type that reflects
equation (19.3). Here, D is the set
of design indices constrained to be
discrete.

19.2 Rounding

A common approach to discrete optimization is to relax the constraint that the
design points must come from a discrete set. The advantage of this relaxation is
that we can use techniques, like gradient descent or linear programming, that
take advantage of the continuous nature of the objective function to direct the
search. After a continuous solution is found, the design variables are rounded to
the nearest feasible discrete design.

Figure 19.1. Rounding can produce
an infeasible design point.

x∗

x

y

Figure 19.2. The nearest feasi-
ble discrete design may be signifi-
cantly worse than the best feasible
discrete design.

There are potential issues with rounding. Rounding might result in an infeasi-
ble design point, as shown in figure 19.1. Even if rounding results in a feasible
point, it may be far from optimal, as shown in figure 19.2. The addition of the
discrete constraint will typically worsen the objective value as illustrated in exam-
ple 19.1. However, for some problems, we can show the relaxed solution is close
to the optimal discrete solution.

We can solve integer programs using rounding by removing the integer con-
straint, solving the corresponding linear program, or LP, and then rounding the
solution to the nearest integer. This method is implemented in algorithm 19.2.

relax(MIP) = LinearProgram(MIP.A, MIP.b, MIP.c)
function round_ip(MIP)

x = minimize_lp(relax(MIP))
for i in MIP.D

x[i] = round(Int, x[i])
end
return x

end

Algorithm 19.2. Methods for relax-
ing a mixed integer linear program
into a linear program and solving
a mixed integer linear program by
rounding. Both methods accept a
mixed integer linear program MIP.
The solution obtained by rounding
may be suboptimal or infeasible.

We can show that rounding the continuous solution for a constraint Ax ≤ b

when A is integral is never too far from the optimal integral solution.4 If x∗c is

4 W. Cook, A.M. Gerards, A. Schrij-
ver, and É. Tardos, ‘‘Sensitivity The-
orems in Integer Linear Program-
ming,’’ Mathematical Programming,
vol. 34, no. 3, pp. 251–264, 1986.an optimal solution of the LP with m× n matrix A, then there exists an optimal
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discrete solution x∗d with
∥
∥x∗c − x∗d

∥
∥

∞
less than or equal to n times the maximum

absolute value of the determinants of the submatrices of A.
The vector c need not be integral for an LP to have an optimal integral solution

because the feasible region is purely determined by A and b. Some approaches
use the dual formulation for the LP, which has a feasible region dependent on c,
in which case having an integral c is also required.

In the special case of totally unimodular integer programs,where A, b, and c have
all integer entries and A is totally unimodular, the simplex algorithm is guaranteed
to return an integer solution. A matrix is totally unimodular if the determinant of
every submatrix5 is 0, 1, or −1, and the inverse of a totally unimodular matrix is 5 A submatrix is a matrix obtained

by deleting rows and/or columns
of another matrix.also integral. In fact, every vertex solution of a totally unimodular integer program

is integral. Thus, every Ax = b for unimodular A and integral b has an integral
solution.

Several matrices and their total unimodularity are discussed in example 19.2.
Methods for determiningwhether amatrix or an integer linear program are totally
unimodular are given in algorithm 19.3.

Consider the following matrices:





1 0 1

0 0 0

1 0 −1











1 0 1

0 0 0

1 0 0











−1 −1 0 0 0

1 0 −1 −1 0

0 1 1 0 −1






The left matrix is not totally unimodular, as
∣
∣
∣
∣
∣

1 1

1 −1

∣
∣
∣
∣
∣
= −2

The other two matrices are totally unimodular.

Example 19.2. Examples of totally
unimodular matrices.

19.3 Cutting Planes

The cutting plane method is an exact method for solving mixed integer programs
when A is not totally unimodular.6 Modern practical methods for solving integer

6 R. E. Gomory, ‘‘An Algorithm
for Integer Solutions to Linear
Programs,’’ Recent Advances in
Mathematical Programming, vol. 64,
pp. 269–302, 1963.

programs use branch and cut algorithms7 that combine the cutting plane method

7 M. Padberg and G. Rinaldi, ‘‘A
Branch-and-Cut Algorithm for the
Resolution of Large-Scale Symmet-
ric Traveling Salesman Problems,’’
SIAM Review, vol. 33, no. 1, pp. 60–
100, 1991.
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isint(x, ϵ=1e-10) = abs(round(x) - x) ≤ ϵ
function is_totally_unimodular(A::Matrix)

# all entries must be in [0,1,-1]
if any(a ∉ (0,-1,1) for a in A)

return false
end
# brute force check every subdeterminant
r,c = size(A)
for i in 1 : min(r,c)

for a in subsets(1:r, i)
for b in subsets(1:c, i)

B = A[a,b]
if det(B) ∉ (0,-1,1)

return false
end

end
end

end
return true

end
function is_totally_unimodular(MIP)

return is_totally_unimodular(MIP.A) &&
all(isint, MIP.b) && all(isint, MIP.c)

end

Algorithm 19.3. Methods for de-
termining whether matrices A or
mixed integer programs MIP are
totally unimodular. The method
isint returns true if the given
value is integral.
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with the branch and bound method, discussed in the next section. The cutting
plane method works by solving the relaxed LP and then adding linear constraints
that result in an optimal solution.

We begin the cutting method with a solution x∗c to the relaxed LP, which must
be a vertex of Ax = b. If the D components in x∗c are integral, then it is also an
optimal solution to the original mixed integer program, and we are done. As
long as the D components in x∗c are not integral, we find a hyperplane with x∗c on
one side and all feasible discrete solutions on the other. This cutting plane is an
additional linear constraint to exclude x∗c . The augmented LP is then solved for a
new x∗c .

Each iteration of algorithm 19.4 introduces cutting planes that make noninte-
gral components of x∗c infeasible while preserving the feasibility of the nearest
integral solutions and the rest of the feasible set. The integer program modi-
fied with these cutting plane constraints is solved for a new relaxed solution.
Figure 19.3 illustrates this process.

x1

x2

x∗c
x1

x2

x∗c

Figure 19.3. The cutting plane
method introduces constraints un-
til the solution to the LP is inte-
gral. The cutting plane is shown as
a red line on the left. The feasible
region of the augmented LP is on
the right.

We wish to add constraints that cut out nonintegral components of x∗c . For an
LP in equality form with constraint Ax = b, recall from section 11.2.1 that we can
partition a vertex solution x∗c to arrive at

ABx∗B + AVx∗V = b (19.4)

where x∗V = 0. The nonintegral components of x∗c will thus occur only in x∗B .
We can introduce an additional inequality constraint for each b ∈ B such that

x∗b is nonintegral:8 8 Note that ⌊x⌋, or floor of x, rounds
x down to the nearest integer.

x∗b − ⌊x∗b⌋ − ∑
v∈V

(
Ābv −

⌊
Ābv

⌋)
xv ≤ 0 (19.5)
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frac(x) = modf(x)[1]
function cutting_plane(MIP)

LP = relax(MIP)
x, b_inds, v_inds = minimize_lp(LP)
n_orig = length(x)
D = copy(MIP.D)
while !all(isint(x[i]) for i in D)

AB, AV = LP.A[:,b_inds], LP.A[:,v_inds]
Abar = AB\AV
b = 0
for i in D

if !isint(x[i])
b += 1
A2 = [LP.A zeros(size(LP.A,1));

zeros(1,size(LP.A,2)+1)]
A2[end,end] = 1
A2[end,v_inds] = (x->floor(x) - x).(Abar[b,:])
b2 = vcat(LP.b, -frac(x[i]))
c2 = vcat(LP.c, 0)
LP = LinearProgram(A2,b2,c2)

end
end
x, b_inds, v_inds = minimize_lp(LP)

end
return x[1:n_orig]

end

Algorithm 19.4. The cutting plane
method solves a given mixed in-
teger program MIP and returns an
optimal design vector. An error is
thrown if no feasible solution ex-
ists. The helper function frac re-
turns the fractional part of a num-
ber, and the implementation for
minimize_lp, algorithm 11.5, has
been adjusted to return the basic
and nonbasic indices b_inds and
v_inds along with an optimal de-
sign x.
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where Ā = A−1
B AV . These cutting planes use only the V-components to cut out

the nonintegral components of x∗c .
Introducing a cutting plane constraint cuts out the relaxed solution x∗c , because

all xv are zero:
x∗b − ⌊x∗b⌋
︸ ︷︷ ︸

>0

− ∑
v∈V

(
Ābv −

⌊
Ābv

⌋)
xv

︸ ︷︷ ︸

0

> 0 (19.6)

A cutting plane is written in equality form using an additional integral slack
variable xk:

xk + ∑
v∈V

(⌊
Ābv

⌋
− Ābv

)
xv = ⌊x∗b⌋ − x∗b (19.7)

Each iteration of algorithm 19.4 thus increases the number of constraints and
the number of variables until solving the LP produces an integral solution. Only
the components corresponding to the original design variables are returned.

The cutting plane method is used to solve a simple integer linear program in
example 19.3.

19.4 Branch and Bound

One method for finding the global optimum of a discrete problem, such as an
integer program, is to enumerate all possible solutions. The branch and bound9 9 A.H. Land and A.G. Doig, ‘‘An

Automatic Method of Solving Dis-
crete Programming Problems,’’
Econometrica, vol. 28, no. 3, pp. 497–
520, 1960.

method guarantees that an optimal solution is found without having to evaluate
all possible solutions. Many commercial integer program solvers use ideas from
both the cutting plane method and branch and bound. The method gets its name
from the branch operation that partitions the solution space10 and the bound operation 10 The subsets are typically disjoint,

but this is not required. For branch
and bound to work, at least one
subset must have an optimal solu-
tion. D.A. Bader, W. E. Hart, and
C.A. Phillips, ‘‘Parallel Algorithm
Design for Branch and Bound,’’ in
Tutorials on Emerging Methodologies
and Applications in Operations Re-
search, H. J. Greenberg, ed., Kluwer
Academic Press, 2004.

that computes a lower bound for a partition.
Branch and bound is a general method that can be applied to many kinds of

discrete optimization problems, but we will focus here on how it can be used for
integer programming. Algorithm 19.5 provides an implementation that uses a
priority queue, which is a data structure that associates priorities with elements
in a collection. We can add an element and its priority value to a priority queue
using the enqueue! operation. We can remove the element with the minimum
priority value using the dequeue! operation.
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Consider the integer program:

minimize
x

2x1 + x2 + 3x3

subject to

[

0.5 −0.5 1.0

2.0 0.5 −1.5

]

x =

[

2.5

−1.5

]

x ≥ 0 x ∈ Z3

The relaxed solution is x∗ ≈ [0.818, 0, 2.091], yielding:

AB =

[

0.5 1

2 −1.5

]

AV =

[

−0.5

0.5

]

Ā =

[

−0.091

−0.455

]

From equation (19.7), the constraint for x1 with slack variable x4 is:

x4 + (−0.091− ⌊−0.091⌋)x2 = ⌊0.818⌋ − 0.818

x4 − 0.909x2 = −0.818

The constraint for x3 with slack variable x5 is:

x5 + (−0.455− ⌊−0.455⌋)x2 = ⌊2.091⌋ − 2.091

x5 − 0.545x2 = −0.091

The modified integer program has:

A =








0.5 −0.5 1 0 0

2 0.5 −1.5 0 0

0 −0.909 0 1 0

0 −0.545 0 0 1








b =








2.5

−1.5

−0.818

−0.091








c =










2

1

3

0

0










Solving the modified LP, we get x∗ ≈ [0.9, 0.9, 2.5, 0.0, 0.4]. Since this point
is not integral, we repeat the procedure with constraints:

x6 − 0.9x4 = −0.9 x7 − 0.9x4 = −0.9

x8 − 0.5x4 = −0.5 x9 − 0.4x4 = −0.4

and solve a third LP to obtain: x∗ = [1, 2, 3, 1, 1, 0, 0, 0, 0] with a final solution
of x∗i = [1, 2, 3].

Example 19.3. The cutting plane
method used to solve an integer
program.
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The algorithm begins with a priority queue containing a single LP relaxation
of the original mixed integer program. Associated with that LP is a solution x∗c
and objective value yc = c⊤x∗c . The objective value serves as a lower bound on
the solution and thus serves as the LP’s priority in the priority queue. At each
iteration of the algorithm, we check whether the priority queue is empty. If it
is not empty, we dequeue the LP with the lowest priority value. If the solution
associated with that element has the necessary integral components, then we
keep track of whether it is the best integral solution found so far.

If the dequeued solution has one or more components in D that are noninte-
gral, we choose from x∗c such a component that is farthest from an integer value.
Suppose this component corresponds to the ith design variable. We branch by con-
sidering two new LPs, each one created by adding one of the following constraints
to the dequeued LP:11 11 Note that ⌈x⌉, or ceiling of x,

rounds x up to the nearest integer.
xi ≤

⌊
x∗i,c
⌋ or xi ≥

⌈
x∗i,c
⌉ (19.8)

as shown in figure 19.4. Example 19.4 demonstrates this process.
We compute the solution associated with these two LPs, which provide lower

bounds on the value of the original mixed integer program. If either solution
lowers the objective value when compared to the best integral solution seen so
far, it is placed into the priority queue. Not placing solutions already known to
be inferior to the best integral solution seen thus far allows branch and bound to
prune the search space. The process continues until the priority queue is empty,
and we return the best feasible integral solution. Example 19.5 shows how branch
and bound can be applied to a small integer program.

Consider a relaxed solution x∗c = [3, 2.4, 1.2, 5.8] for an integer program with
c = [−1,−2,−3,−4]. The lower bound is

y ≥ c⊤x∗c = −34.6

We branch on a nonintegral coordinate of x∗c , typically the one farthest from
an integer value. In this case, we choose the first nonintegral coordinate, x∗2,c,
which is 0.4 from the nearest integer value. We then consider two new LPs,
one with x2 ≤ 2 as an additional constraint and the other with x2 ≥ 3 as an
additional constraint.

Example 19.4. An example of a
single application of the branching
step in branch and bound.



19.4. branch and bound 349

x1

x2

x∗c

x1

x2

x1 ≤ 1

x∗c,left

x1

x2

x1 ≥ 2

x∗c,right

Figure 19.4. Branching splits the
feasible set into subsets with an
additional integral inequality con-
straint.
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function minimize_lp_and_y(LP)
try

x = minimize_lp(LP)
return (x, x⋅LP.c)

catch
return (fill(NaN, length(LP.c)), Inf)

end
end
function branch_and_bound(MIP)

LP = relax(MIP)
x, y = minimize_lp_and_y(LP)
n = length(x)
x_best, y_best, Q = deepcopy(x), Inf, PriorityQueue()
enqueue!(Q, (LP,x,y), y)
while !isempty(Q)

LP, x, y = dequeue!(Q)
if any(isnan.(x)) || all(isint(x[i]) for i in MIP.D)

if y < y_best
x_best, y_best = x[1:n], y

end
else

i = argmax([abs(x[i] - round(x[i])) for i in MIP.D])
# x_i ≤ floor(x_i)
A, b, c = LP.A, LP.b, LP.c
A2 = [A zeros(size(A,1));

[j==i for j in 1:size(A,2)]' 1]
b2, c2 = vcat(b, floor(x[i])), vcat(c, 0)
LP2 = LinearProgram(A2,b2,c2)
x2, y2 = minimize_lp_and_y(LP2)
if y2 ≤ y_best

enqueue!(Q, (LP2,x2,y2), y2)
end
# x_i ≥ ceil(x_i)
A2 = [A zeros(size(A,1));

[j==i for j in 1:size(A,2)]' -1]
b2, c2 = vcat(b, ceil(x[i])), vcat(c, 0)
LP2 = LinearProgram(A2,b2,c2)
x2, y2 = minimize_lp_and_y(LP2)
if y2 ≤ y_best

enqueue!(Q, (LP2,x2,y2), y2)
end

end
end
return x_best

end

Algorithm 19.5. The branch
and bound algorithm for
solving a mixted integer pro-
gram MIP. The helper method
minimize_lp_and_y solves an LP
and returns both the solution
and its value. An infeasible LP
produces a NaN solution and an
Inf value. More sophisticated
implementations will drop vari-
ables whose solutions are known
in order to speed computation.
The PriorityQueue type is pro-
vided by the DataStructures.jl
package.
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We can use branch and bound to solve the integer program in example 19.3.
As before, the relaxed solution is x∗c = [0.818, 0, 2.09], with a value of 7.909.
We branch on the first component, resulting in two integer programs, one
with x1 ≤ 0 and one with x1 ≥ 1:

Aleft =






0.5 −0.5 1 0

2 0.5 −1.5 0

1 0 0 1




 bleft =






2.5

−1.5

0




 cleft =








2

1

3

0








Aright =






0.5 −0.5 1 0

2 0.5 −1.5 0

1 0 0 −1




 bright =






2.5

−1.5

1




 cright =








2

1

3

0








The left LP with x1 ≤ 0 is infeasible. The right LP with x1 ≥ 1 has a
relaxed solution, x∗c = [1, 2, 3, 0], and a value of 13. We have thus obtained
our integral solution, x∗i = [1, 2, 3].

Example 19.5. Appying branch and
bound to solve an integer program-
ming problem.

19.5 Dynamic Programming

Dynamic programming12 is a technique that can be applied to problemswith optimal

12 The term dynamic programming
was chosen by Richard Bellman to
reflect the time-varying aspect of
the problems he applied it to and
to avoid the sometimes negative
connotations words like research
and mathematics had. He wrote,
‘‘I thought dynamic programming
was a good name. It was something
not even a Congressman could ob-
ject to. So I used it as an umbrella
for my activities.’’ R. Bellman, Eye
of the Hurricane: An Autobiography.
World Scientific, 1984. p. 159.

substructure and overlapping subproblems. A problem has optimal substructure if
an optimal solution can be constructed from optimal solutions of its subproblems.
Figure 19.5 shows an example.

a
b c

Figure 19.5. Shortest path prob-
lems have optimal substructure be-
cause if the shortest path from any
a to c passes through b, then the
subpaths a→ b and b→ c are both
shortest paths.

A problem with overlapping subproblems solved recursively will encounter
the same subproblemmany times. Instead of enumerating exponentiallymany po-
tential solutions, dynamic programming either stores subproblem solutions, and
thereby avoids having to recompute them, or recursively builds the optimal solu-
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tion in a single pass. Problems with recurrence relations often have overlapping
subproblems. Figure 19.6 shows an example.

P9

P7

P5

P3

P1 P0

P2

P4

P2 P1

P6

P4

P2 P1

P3

P1 P0

P0 P1

P2P3

P4P5

P6P7

P9
Figure 19.6. We can compute
the nth term of the Padovan
sequence, Pn = Pn−2 + Pn−3, with
P0 = P1 = P2 = 1 by recursing
through all subterms (left). A
more efficient approach is to
compute subterms once and reuse
their values in subsequent calcula-
tions by exploiting the problem’s
overlapping substructure (right).

Dynamic programming can be implemented either top-down or bottom-up, as
demonstrated in algorithm 19.6. The top-down approach begins with the desired
problem and recurses down to smaller and smaller subproblems. Subproblem
solutions are stored so that when we are given a new subproblem, we can either
retrieve the computed solution or solve and store it for future use.13 The bottom- 13 Storing subproblem solutions in

this manner is called memoization.up approach starts by solving the smaller subproblems and uses their solutions
to obtain solutions to larger problems.

function padovan_topdown(n, P=Dict())
if !haskey(P, n)

P[n] = n < 3 ? 1 :
padovan_topdown(n-2,P) + padovan_topdown(n-3,P)

end
return P[n]

end
function padovan_bottomup(n)

P = Dict(0=>1,1=>1,2=>1)
for i in 3 : n

P[i] = P[i-2] + P[i-3]
end
return P[n]

end

Algorithm 19.6. Computing the
Padovan sequence using dynamic
programming, with both the top-
down and bottom-up approaches.
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The knapsack problem is a well-known combinatorial optimization problem that
often arises in resource allocation.14 Suppose we are packing our knapsack for a 14 The knapsack problem is an in-

teger program with a single con-
straint, but it can be efficiently
solved using dynamic program-
ming.

trip, but we have limited space and want to pack the most valuable items. There
are several variations of the knapsack problem. In the 0-1 knapsack problem, we
have the following optimization problem:

minimize
x

−
n

∑
i=1

vixi

subject to
n

∑
i=1

wixi ≤ wmax

xi ∈ {0, 1} for all i in {1, . . . , n}

(19.9)

We have n items, with the ith item having integral weight wi > 0 and value vi.
The design vector x consists of binary values that indicate whether an item is
packed. The total weight cannot exceed our integral capacity wmax, and we seek
to maximize the total value of packed items.

There are 2n possible design vectors, which makes direct enumeration for large
n intractable. However, we can use dynamic programming. The 0-1 knapsack
problemhas optimal substructure and overlapping subproblems. Consider having
solved knapsack problems with n items and several capacities up to wmax. The
solution to a larger knapsack problem with one additional item with weight wn+1

and capacity wmax will either include or not include the new item:
• If it is not worth including the new item, the solution will have the same value

as a knapsack with n− 1 items and capacity wmax.

• If it is worth including the new item, the solution will have the value of a
knapsack with n− 1 items and capacity wmax − wn+1 plus the value of the
new item.
The recurrence relation is:

knapsack(i, wmax) =







0 if i = 0

knapsack(i− 1, wmax) if wi > wmax

max







knapsack(i− 1, wmax) (discard new item)
knapsack(i− 1, wmax − wi) + vi (include new item)

otherwise
(19.10)
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The 0-1 knapsack problem can be solved using the implementation in algo-
rithm 19.7.

function knapsack(v, w, w_max)
n = length(v)
y = Dict((0,j) => 0.0 for j in 0:w_max)
for i in 1 : n

for j in 0 : w_max
y[i,j] = w[i] > j ? y[i-1,j] :

max(y[i-1,j],
y[i-1,j-w[i]] + v[i])

end
end

# recover solution
x, j = falses(n), w_max
for i in n: -1 : 1

if w[i] ≤ j && y[i,j] - y[i-1, j-w[i]] == v[i]
# the ith element is in the knapsack
x[i] = true
j -= w[i]

end
end
return x

end

Algorithm 19.7. Amethod for solv-
ing the 0-1 knapsack problem with
itemvalues v, integral itemweights
w, and integral capacity w_max. Re-
covering the design vector from
the cached solutions requires ad-
ditional iteration.

19.6 Ant Colony Optimization

Ant colony optimization15 is a stochastic method for optimizing paths through 15 M. Dorigo, V. Maniezzo, and A.
Colorni, ‘‘Ant System: Optimiza-
tion by a Colony of Cooperating
Agents,’’ IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B
(Cybernetics), vol. 26, no. 1, pp. 29–
41, 1996.

graphs. This method was inspired by some ant species that wander randomly
in search of food, leaving pheromone trails as they go. Other ants that stumble
upon a pheromone trail are likely to start following it, thereby reinforcing the
trail’s scent. Pheromones slowly evaporate over time, causing unused trails to
fade. Short paths, with stronger pheromones, are traveled more often and thus
attract more ants. Thus, short paths create positive feedback that lead other ants
to follow and further reinforce the shorter path.

Basic shortest path problems, such as the shortest paths found by ants between
the ant hill and sources of food, can be efficiently solved using dynamic pro-
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gramming. Ant colony optimization has been used to find near-optimal solutions
to the traveling salesman problem, a much more difficult problem in which we
want to find the shortest path that passes through each node exactly once. Ant
colony optimization has also been used to route multiple vehicles, find optimal
locations for factories, and fold proteins.16 The algorithm is stochastic in nature

16 These and other applications are
discussed in these references: M.
Manfrin, ‘‘Ant Colony Optimiza-
tion for the Vehicle Routing Prob-
lem,’’ PhD thesis, Université Li-
bre de Bruxelles, 2004. T. Stüt-
zle, ‘‘MAX-MIN Ant System for
Quadratic Assignment Problems,’’
Technical University Darmstadt,
Tech. Rep., 1997. and A. Shmygel-
ska, R. Aguirre-Hernández, and
H.H. Hoos, ‘‘An Ant Colony Algo-
rithm for the 2D HP Protein Fold-
ing Problem,’’ in International Work-
shop on Ant Algorithms (ANTS),
2002.

and is thus resistant to changes to the problem over time, such as traffic delays
changing effective edge lengths in the graph or networking issues that remove
edges entirely.

Ants move stochastically based on the attractiveness of the edges available to
them. The attractiveness of transition i→ j depends on the pheromone level and
an optional prior factor:

A(i→ j) = τ(i→ j)αη(i→ j)β (19.11)

where α and β are exponents for the pheromone level τ and prior factor η, re-
spectively.17 For problems involving shortest paths, we can set the prior factor 17 Dorigo, Maniezzo, and Colorni

recommend α = 1 and β = 5.to the inverse edge length ℓ(i → j) to encourage the traversal of shorter paths:
η(i→ j) = 1/ℓ(i→ j). A method for computing the edge attractiveness is given
in algorithm 19.8.

Suppose an ant is at node i and can transition to any of the nodes j ∈ J . The set
of successor nodes J contains all valid outgoing neighbors.18 Sometimes edges 18 The outgoing neighbors of a node

i are all nodes j such that i → j
is in the graph. In an undirected
graph, the neighbors and the out-
going neighbors are identical.

are excluded, such as in the traveling salesman problem where ants are prevented
from visiting the same node twice. It follows that J is dependent on both i and
the ant’s history.

function edge_attractiveness(graph, τ, η; α=1, β=5)
A = Dict()
for i in 1 : nv(graph)

neighbors = outneighbors(graph, i)
for j in neighbors

v = τ[(i,j)]^α * η[(i,j)]^β
A[(i,j)] = v

end
end
return A

end

Algorithm 19.8. Amethod for com-
puting the edge attractiveness ta-
ble given graph graph, pheromone
levels τ, prior edge weights η,
pheromone exponent α, and prior
exponent β.
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The probability of edge transition i→ j is:

P(i→ j) =
A(i→ j)

∑j′∈J A(i→ j′)
(19.12)

Ants affect subsequent generations of ants by depositing pheromones. There
are several methods for modeling pheromone deposition. A common approach is
to deposit pheromones establishing after a complete path.19 Ants that do not find 19 M. Dorigo, G. Di Caro, and L.M.

Gambardella, ‘‘Ant Algorithms for
Discrete Optimization,’’ Artificial
Life, vol. 5, no. 2, pp. 137–172, 1999.

a path do not deposit pheromones. For shortest path problems, a successful ant
that has established a path of length ℓ deposits 1/ℓ pheromones on each edge it
traversed.

import StatsBase: Weights, sample
function run_ant(G, lengths, τ, A, x_best, y_best)

x = [1]
while length(x) < nv(G)

i = x[end]
neighbors = setdiff(outneighbors(G, i), x)
if isempty(neighbors) # ant got stuck

return (x_best, y_best)
end

as = [A[(i,j)] for j in neighbors]
push!(x, neighbors[sample(Weights(as))])

end

l = sum(lengths[(x[i-1],x[i])] for i in 2:length(x))
for i in 2 : length(x)

τ[(x[i-1],x[i])] += 1/l
end
if l < y_best

return (x, l)
else

return (x_best, y_best)
end

end

Algorithm 19.9. A method for sim-
ulating a single ant on a traveling
salesman problem in which the ant
starts at the first node and attempts
to visit each node exactly once.
Pheromone levels are increased at
the end of a successful tour. The
parameters are the graph G, edge
lengths lengths, pheromone levels
τ, edge attractiveness A, the best so-
lution found thus far x_best, and
its value y_best.

Ant colony optimization also models pheromone evaporation, which naturally
occurs in the real world. Modeling evaporation helps prevent the algorithm from
prematurely converging to a single, potentially suboptimal, solution. Pheromone
evaporation is executed at the end of each iteration after all ant simulations have
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been completed. Evaporation decreases the pheromone level of each transition
by a factor of 1− ρ, with ρ ∈ [0, 1].20 20 It is common to use ρ = 1/2.

For m ants at iteration k, the effective pheromone update is

τ(i→ j)(k+1) = (1− ρ)τ(i→ j)(k) +
m

∑
a=1

1

ℓ(a)

(

(i→ j) ∈ P (a)
)

(19.13)

where ℓ(a) is the path length and P (a) is the set of edges traversed by ant a.
Ant colony optimization is implemented in algorithm 19.10, with individual ant

simulations using algorithm 19.9. Figure 19.7 visualizes ant colony optimization
used to solve a traveling salesman problem.

function ant_colony_optimization(G, lengths;
m = 1000, k_max=100, α=1.0, β=5.0, ρ=0.5,
η = Dict((e.src,e.dst)=>1/lengths[(e.src,e.dst)]

for e in edges(G)))
τ = Dict((e.src,e.dst)=>1.0 for e in edges(G))
x_best, y_best = [], Inf
for k in 1 : k_max

A = edge_attractiveness(G, τ, η, α=α, β=β)
for (e,v) in τ

τ[e] = (1-ρ)*v
end
for ant in 1 : m

x_best,y_best = run_ant(G,lengths,τ,A,x_best,y_best)
end

end
return x_best

end

Algorithm 19.10. Ant colony
optimization, which takes a di-
rected or undirected graph G from
LightGraphs.jl and a dictionary
of edge tuples to path lengths
lengths. Ants start at the first node
in the graph. Optional parameters
include the number of ants per it-
eration m, the number of iterations
k_max, the pheromone exponent α,
the prior exponent β, the evapora-
tion scalar ρ, and a dictionary of
prior edge weights η.

Figure 19.7. Ant colony opti-
mization used to solve a traveling
salesman problem on a directed
graph using 50 ants per iteration.
Path lengths are the Euclidean dis-
tances. Color opacity corresponds
to pheromone level.
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19.7 Summary

• Discrete optimization problems require that the design variables be chosen
from discrete sets.

• Relaxation, in which the continuous version of the discrete problem is solved,
is by itself an unreliable technique for finding an optimal discrete solution but
is central to more sophisticated algorithms.

• Many combinatorial optimization problems can be framed as an integer pro-
gram, which is a linear program with integer constraints.

• Both the cutting plane and branch and bound methods can be used to solve
integer programs efficiently and exactly. The branch and bound method is
quite general and can be applied to a wide variety of discrete optimization
problems.

• Dynamic programming is a powerful technique that exploits optimal overlap-
ping substructure in some problems.

• Ant colony optimization is a nature-inspired algorithm that can be used for
optimizing paths in graphs.

19.8 Exercises

Exercise 19.1. A Boolean satisfiability problem, often abbreviated SAT, requires de-
termining whether a Boolean design exists that causes a Boolean-valued objective
function to output true. SAT problems were the first to be proven to belong to
the difficult class of NP-complete problems.21 This means that SAT is at least as 21 S. Cook, ‘‘The Complexity of

Theorem-Proving Procedures,’’ in
ACM Symposium on Theory of Com-
puting, 1971.

difficult as all other problems whose solutions can be verified in polynomial time.
Consider the Boolean objective function:

f (x) = x1 ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)

Find an optimal design using enumeration. How many designs must be consid-
ered for an n-dimensional design vector in the worst case?
Exercise 19.2. Formulate the problem in exercise 19.1 as an integer linear pro-
gram. Can any Boolean satisfiability problem be formulated as an integer linear
program?
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Exercise 19.3. Why are we interested in totally unimodular matrices? Further-
more, why does every totally unimodular matrix contain only entries that are 0,
1, or −1?

Exercise 19.4. This chapter solved the 0-1 knapsack problem using dynamic
programming. Show how to apply branch and bound to the 0-1 knapsack prob-
lem, and use your approach to solve the knapsack problem with values v =

[9, 4, 2, 3, 5, 3], and weights w = [7, 8, 4, 5, 9, 4] with capacity wmax = 20.





20 Expression Optimization

Previous chapters discussed optimization over a fixed set of design variables. For
many problems, the number of variables is unknown, such as in the optimization
of graphical structures or computer programs. Designs in these contexts can be
represented by expressions that belong to a grammar. This chapter discusses
ways to make the search of optimal designs more efficient by accounting for the
grammatical structure of the design space.

20.1 Grammars

An expression can be represented by a tree of symbols. For example, themathemati-
cal expression x+ ln 2 can be represented using the tree in figure 20.1 consisting of
the symbols +, x, ln, and 2. Grammars specify constraints on the space of possible
expressions.

+

x ln

2

Figure 20.1. The expression x +
ln 2 represented as a tree.

A grammar is represented by a set of production rules. These rules involve
symbols as well as types. A type can be interpreted as a set of expression trees. A
production rule represents a possible expansion of type to an expression involving
symbols or types. If a rule expands only to symbols, then it is called terminal
because it cannot be expanded further. An example of a nonterminal rule is
R 7→ R + R, which means that the type R can consist of elements of the set R

added to elements in the set R.1 1 This chapter focuses on context-
free grammars, but other forms exist.
See L. Kallmeyer, Parsing Beyond
Context-Free Grammars. Springer,
2010.

We can generate an expression from a grammar by starting with a start type
and then recursively applying different production rules. We stop when the
tree contains only symbols. Figure 20.2 illustrates this process for the expression
x + ln 2. An application to natural language expressions is shown in example 20.1.

The number of possible expressions allowed by a grammar can be infinite.
Example 20.2 shows a grammar that allows for infinitely many valid expressions.
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R +

R R

+

x ln

R

+

x ln

2

Figure 20.2. Using the production
rules

R 7→ R + R

R 7→ x

R 7→ ln(R)

R 7→ 2

to generate x + ln 2. Blue nodes are
unexpanded types.

Consider a grammar that allows for the generation of simple English state-
ments:

S 7→ N V

V 7→ V A

A 7→ rapidly | efficiently
N 7→ Alice | Bob | Mykel | Tim
V 7→ runs | reads | writes

The types S, N, V, and A correspond to statements, nouns, verbs, and
adverbs, respectively. An expression is generated by starting with the type S

and iteratively replacing types:

S

N V

Mykel V A

Mykel writes rapidly

Not all terminal symbol categories must be used. For instance, the statement
‘‘Alice runs’’ can also be generated.

Example 20.1. A grammar for pro-
ducing simple English statements.
Using | on the right-hand side of
an expression is shorthand for or.
Thus, the rule

A 7→ rapidly | efficiently
is equivalent to having two rules,
A 7→ rapidly and A 7→ efficiently.
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Expression optimization often constrains expressions to a maximum depth or
penalizes expressions based on their depth or node count. Even if the grammar
allows a finite number of expressions, the space is often too vast to search exhaus-
tively. Hence, there is a need for algorithms that efficiently search the space of
possible expressions for one that optimizes an objective function.

Consider a four-function calculator grammar that applies addition, subtrac-
tion, multiplication, and division to the ten digits:

R 7→ R + R

R 7→ R−R

R 7→ R×R

R 7→ R / R

R 7→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An infinite number of expressions can be generated because the nonterminal
R can always be expanded into one of the calculator operations.

Many expressions will produce the same value. Addition and multipli-
cation operators are commutative, meaning that the order does not matter.
For example, a + b is the same as b + a. These operations are also associative,
meaning the order in which multiple operations of the same type occur do
not matter. For example, a× b× c is the same as c× b× a. Other operations
preserve values, like adding zero or multiplying by one.

Not all expressions under this grammar are mathematically valid. For
example, division by zero is undefined. Removing zero as a terminal symbol
is insufficient to prevent this error because zero can be constructed using
other operations, such as 1− 1. Such exceptions are often handled by the
objective function, which can catch exceptions and penalize them.

Example 20.2. Some of the chal-
lenges associated with grammars,
as illustrated with a four-function
calculator grammar.

The expression optimization routines covered in the chapter use ExprRules.jl.
Grammars can be defined using the grammar macro by listing the production
rules, as shown in example 20.3.

Many of the expression optimization algorithms involve manipulating com-
ponents of an expression tree in a way that preserves the way the types were
expanded. A RuleNode object tracks which production rules were applied when
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We may define a grammar using the grammar macro. The nonterminals are
on the left of the equal sign, and the expressions with terminals and nonter-
minals are the on the right. The package includes some syntax to represent
grammars more compactly.
using ExprRules
grammar = @grammar begin

R = x # reference a variable
R = R * A # multiple children
R = f(R) # call a function
R = _(randn()) # random variable generated on node creation
R = 1 | 2 | 3 # equivalent to R = 1, R = 2, and R = 3
R = |(4:6) # equivalent to R = 4, R = 5, and R = 6
A = 7 # rules for different return types

end;

Example 20.3. Example of
defining a grammar using the
ExprRules.jl package.

doing an expansion. Calling rand with a specified starting type will generate
a random expression represented by a RuleNode. Calling sample will select a
random RuleNode from an existing RuleNode tree. Nodes are evaluated using
eval.

Themethod return_type returns the node’s return type as a symbol, isterminal
returns whether the symbol is terminal, child_types returns the list of nontermi-
nal symbols associated with the node’s production rule, and nchildren returns
the number of children. These four methods each take as input the grammar
and the node. The number of nodes in an expression tree is obtained using
length(node), and the depth is obtained using depth(node).

A third type, NodeLoc, is used to refer to a node’s location in the expression
tree. Subtrees manipulation often requires NodeLocs.
loc = sample(NodeLoc, node); # uniformly sample a node loc
loc = sample(NodeLoc, node, :R, grammar); # sample a node loc of type R
subtree = get(node, loc);

20.2 Genetic Programming

Genetic algorithms (see chapter 9) use chromosomes that encode design points
in a sequential format. Genetic programming2 represents individuals using trees

2 J. R. Koza, Genetic Programming:
On the Programming of Computers
by Means of Natural Selection. MIT
Press, 1992.
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instead (figure 20.3), which are better at representing mathematical functions,
programs, decision trees, and other hierarchical structures.

if

≤

x 2

×

x +

y 3

0

Figure 20.3. A tree representation
of the Julia method:
x ≤ 2 ? x*(y+3) : 0

Similar to genetic algorithms, genetic programs are initialized randomly and
support crossover and mutation. In tree crossover (figure 20.4), two parent trees
are mixed to form a child tree. A random node is chosen in each parent, and the
subtree at the chosen node in the first parent is replaced with the subtree at the
chosen node of the second parent. Tree crossover works on parents with different
sizes and shapes, allowing arbitrary trees to mix. In some cases one must ensure
that replacement nodes have certain types, such as Boolean values input into the
condition of an if statement.3 Tree crossover is implemented in algorithm 20.1.

3 This book focuses only on ge-
netic operations that adhere to
the constraints of the grammar.
Sometimes genetic programming
with this restriction is referred to
as strongly typed genetic program-
ming, as discussed in D. J. Montana,
‘‘Strongly Typed Genetic Program-
ming,’’ Evolutionary Computation,
vol. 3, no. 2, pp. 199–230, 1995.

Parent A Parent B Child

Figure 20.4. Tree crossover is used
to combine two parent trees to pro-
duce a child tree.

Tree crossover tends to produce trees with greater depth than the parent trees.
Each generation tends to increase in complexity, which often results in overly
complicated solutions and slower runtimes.We encourage parsimony, or simplicity,
in the solution, by introducing a small bias in the objective function value based
on a tree’s depth or node count.

Applying tree mutation (figure 20.5) starts by choosing a random node in the
tree. The subtree rooted at that node is deleted, and a new random subtree is
generated to replace the old subtree. In contrast to mutation in binary chromo-
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struct TreeCrossover <: CrossoverMethod
grammar
max_depth

end
function crossover(C::TreeCrossover, a, b)

child = deepcopy(a)
crosspoint = sample(b)
typ = return_type(C.grammar, crosspoint.ind)
d_subtree = depth(crosspoint)
d_max = C.max_depth + 1 - d_subtree
if d_max > 0 && contains_returntype(child,C.grammar,typ,d_max)

loc = sample(NodeLoc, child, typ, C.grammar, d_max)
insert!(child, loc, deepcopy(crosspoint))

end
child

end

Algorithm 20.1. Tree crossover
implemented for a and b of type
RuleNode from ExprRules.jl. The
TreeCrossover struct contains a
rule set grammar and a maximum
depth max_depth.

somes, treemutation can typically occur at most once, oftenwith a low probability
around 1%. Tree mutation is implemented in algorithm 20.2.

Before After

Figure 20.5. Tree mutation deletes
a random subtree and generates a
new one to replace it.
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struct TreeMutation <: MutationMethod
grammar
p

end
function mutate(M::TreeMutation, a)

child = deepcopy(a)
if rand() < M.p

loc = sample(NodeLoc, child)
typ = return_type(M.grammar, get(child, loc).ind)
subtree = rand(RuleNode, M.grammar, typ)
insert!(child, loc, subtree)

end
return child

end

Algorithm 20.2. Tree mutation im-
plemented for an individual a of
type RuleNode from ExprRules.jl.
The TreeMutation struct contains
a rule set grammar and a mutation
probability p.

Tree permutation (figure 20.6) is a second form of genetic mutation. Here, the
children of a randomly chosen node are randomly permuted. Tree permutation
alone is typically not sufficient to introduce new genetic material into a population
and is often combined with tree mutation. Tree permutation is implemented in
algorithm 20.3.

Before After

Figure 20.6. Tree permutation per-
mutes the children of a randomly
chosen node.

The implementation of genetic programming is otherwise identical to that
of genetic algorithms. More care must typically be taken in implementing the
crossover and mutation routines, particularly when determining what sorts of
nodes can be generated and that only syntactically correct trees are produced.
Genetic programming is used to generate an expression that approximates π in
example 20.4.
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struct TreePermutation <: MutationMethod
grammar
p

end
function mutate(M::TreePermutation, a)

child = deepcopy(a)
if rand() < M.p

node = sample(child)
n = length(node.children)
types = child_types(M.grammar, node)
for i in 1 : n-1

c = 1
for k in i+1 : n

if types[k] == types[i] &&
rand() < 1/(c+=1)

node.children[i], node.children[k] =
node.children[k], node.children[i]

end
end

end
end
return child

end

Algorithm 20.3. Tree permutation
implemented for an individual a of
type RuleNode from ExprRules.jl,
where p is the mutation probabil-
ity.
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Consider approximating π using only operations on a four-function calcula-
tor. We can solve this problem using genetic programming where nodes can
be any of the elementary operations: add, subtract, multiply, and divide, and
the digits 1− 9.

We use ExprRules.jl to specify our grammar:
grammar = @grammar begin

R = |(1:9)
R = R + R
R = R - R
R = R / R
R = R * R

end

We construct an objective function and penalize large trees:
function f(node)

value = eval(node, grammar)
if isinf(value) || isnan(value)

return Inf
end
Δ = abs(value - π)
return log(Δ) + length(node)/1e3

end

We finally run our genetic program using a call to the genetic_algorithm
function from section 9.2:
srand(0)
population = [rand(RuleNode, grammar, :R) for i in 1:1000]
best_tree = genetic_algorithm(f, population, 30,

TruncationSelection(50),
TreeCrossover(grammar, 10),
TreeMutation(grammar, 0.25))

The best performing tree is shown on the right. It evaluates to 3.141586, which
matches π to four decimal places.

Example 20.4. Using genetic pro-
gramming to estimate π using only
digits and the four principle arith-
metic operations.
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20.3 Grammatical Evolution

Grammatical evolution4 operates on an integer array instead of a tree, allowing the 4 C. Ryan, J. J. Collins, and M.O.
Neill, ‘‘Grammatical Evolution:
Evolving Programs for an Arbi-
trary Language,’’ in European Con-
ference on Genetic Programming,
1998.

same techniques employed in genetic algorithms to be applied. Unlike genetic
algorithms, the chromosomes in grammatical evolution encode expressions based
on a grammar. Grammatical evolution was inspired by genetic material, which is
inherently serial like the chromosomes used in genetic algorithms. 5 5 Our serial DNA is read and used

to construct complicated protein
structures. DNA is often referred
to as the genotype—the object
on which genetic operations are
performed. The protein structure
is the phenotype—the object en-
coded by the genotype whose per-
formance is evaluated. The gram-
matical evolution literature often
refers to the integer design vector
as the genotype and the resulting
expression as the phenotype.

In grammatical evolution, designs are integer arrays much like the chromo-
somes used in genetic algorithms. Each integer is unbounded because indexing
is performed using modular arithmetic. The integer array can be translated into
an expression tree by parsing it from left to right.

We begin with a starting symbol and a grammar. Suppose n rules in the
grammar can be applied to the starting symbol. The jth rule is applied, where
j = i mod1 n and i is the first integer in the integer array.6

6 We use x mod1 n to refer to the 1-
index modulus:

((x− 1) mod n) + 1

This type ofmodulus is useful with
1-based indexing. The correspond-
ing Julia function is mod1.

We then consider the rules applicable to the resulting expression and use
similar modular arithmetic based on the second integer in the array to select
which rule to apply. This process is repeated until no rules can be applied and the
phenotype is complete.7 The decoding process is implemented in algorithm 20.4

7 No genetic information is read
when there is only a single applica-
ble rule.

and is worked through in example 20.5.
It is possible for the integer array to be too short, thereby causing the translation

process to run past the length of the array. Rather than producing an invalid
individual and penalizing it in the objective function, the process wraps around
to the beginning of the array instead. This wrap-around effect means that the same
decision can be read several times during the transcription process. Transcription
can result in infinite loops, which can be prevented by a maximum depth.

Genetic operations work directly on the integer design array. We can adopt
the operations used on real-valued chromosomes and apply them to the integer-
valued chromosomes. The only change is that mutation must preserve real values.
A mutation method for integer-valued chromosomes using zero-mean Gaussian
perturbations is implemented in algorithm 20.5.

Grammatical evolution uses two additional genetic operators. The first, gene
duplication, occurs naturally as an error in DNA replication and repair. Gene
duplication can allow new genetic material to be generated and can store a second
copy of a useful gene to reduce the chance of a lethal mutation removing the gene
from the gene pool. Gene duplication chooses a random interval of genes in the
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struct DecodedExpression
node
n_rules_applied

end
function decode(x, grammar, sym, c_max=1000, c=0)

node, c = _decode(x, grammar, sym, c_max, c)
DecodedExpression(node, c)

end
function _decode(x, grammar, typ, c_max, c)

types = grammar[typ]
if length(types) > 1

g = x[mod1(c+=1, length(x))]
rule = types[mod1(g, length(types))]

else
rule = types[1]

end
node = RuleNode(rule)
childtypes = child_types(grammar, node)
if !isempty(childtypes) && c < c_max

for ctyp in childtypes
cnode, c = _decode(x, grammar, ctyp, c_max, c)
push!(node.children, cnode)

end
end
return (node, c)

end

Algorithm 20.4. A method for de-
coding an integer design vector
to produce an expression, where
x is a vector of integers, grammar
is a Grammar, and sym is the root
symbol. The counter c is used
during the recursion process and
the parameter c_max is an upper
limit on the maximum number of
rule applications, to prevent an in-
finite loop. The method returns
a DecodedExpression, which con-
tains the expression tree and the
number of rules applied during the
decoding process.
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Consider a grammar for real-valued strings:

R 7→ D D′ P E

D′ 7→ D D′ | ǫ
P 7→ . D D′ | ǫ
E 7→ E S D D′ | ǫ
S 7→ + | − | ǫ

D 7→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

where R is a real value, D is a terminal decimal, D′ is a nonterminal decimal,
P is the decimal part, E is the exponent, and S is the sign. Any ǫ values
produce empty strings.

Suppose our design is [205, 52, 4, 27, 10, 59, 6] and we have the starting
symbol R. There is only one applicable rule, so we do not use any genetic
information and we replace R with DD′PE.

Next we must replace D. There are 10 options. We select 205 mod1 10 = 5,
and thus obtain 4D′PE

Next we replace D′, which has two options.We select index 52 mod1 2 = 2,
which corresponds to ǫ.

Continuing in this manner we produce the string 4E+8.
The above grammar can be implemented in ExprRules using:
grammar = @grammar begin

R = D * De * P * E
De = D * De | ""
P = "." * D * De | ""
E = "E" * S * D * De | ""
S = "+"|"-"|""
D = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"

end

and can be evaluated using:
x = [205, 52, 4, 27, 10, 59, 6]
str = eval(decode(x, grammar, :R).node, grammar)

Example 20.5. The process by
which an integer design vector in
grammatical evolution is decoded
into an expression.

Our implementation is depth-
first. If 52 were instead 51, the rule
D′ 7→ D D′ would be applied,
followed by selecting a rule for
the new D, eventually resulting in
43950.950E+8.
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struct IntegerGaussianMutation <: MutationMethod
σ

end
function mutate(M::IntegerGaussianMutation, child)

return child + round.(Int, randn(length(child)).*M.σ)
end

Algorithm 20.5. The Gaussian mu-
tation method modified to pre-
serve integer values for integer-
valued chromosomes. Each value
is perturbed by a zero-mean Gaus-
sian random value with standard
deviation σ and then rounded to
the nearest integer.

chromosome to duplicate. A copy of the selected interval is appended to the back
of the chromosome. Duplication is implemented in algorithm 20.6.

struct GeneDuplication <: MutationMethod
end
function mutate(M::GeneDuplication, child)

n = length(child)
i, j = rand(1:n), rand(1:n)
interval = min(i,j) : max(i,j)
return vcat(child, deepcopy(child[interval]))

end

Algorithm 20.6. The gene duplica-
tion method used in grammatical
evolution.

The second genetic operation, pruning, tackles a problem encountered during
crossover. As illustrated in figure 20.7, crossover will select a crossover point at
random in each chromosome and construct a new chromosome using the left
side of the first and the right side of the second chromosome. Unlike genetic
algorithms, the trailing entries in chromosomes of grammatical evolution may
not be used; during parsing, once the tree is complete, the remaining entries
are ignored. The more unused entries, the more likely it is that the crossover
point lies in the inactive region, thus not providing new beneficial material. An
individual is pruned with a specified probability, and, if pruned, its chromosome
is truncated such that only active genes are retained. Pruning is implemented in
algorithm 20.7 and is visualized in figure 20.8.

Like genetic programming, grammatical evolution can use the genetic algo-
rithm method.8 We can construct a MutationMethod that applies multiple mu- 8 Genotype to phenotype mapping

would occur in the objective func-
tion.tation methods in order to use pruning, duplication, and standard mutation

approaches in tandem. Such a method is implemented in algorithm 20.8.
Grammatical evolution suffers from two primary drawbacks. First, it is difficult

to tell whether the chromosome is feasible without decoding it into an expression.
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parent a

parent b

child

Figure 20.7. Crossover applied to
chromosomes in grammatical evo-
lution may not affect the active
genes in the front of the chromo-
some. The child shown here inher-
its all of the active shaded genes
from parent a so it will effectively
act as an identical expression. Prun-
ing was developed to overcome
this issue.

struct GenePruning <: MutationMethod
p
grammar
typ

end
function mutate(M::GenePruning, child)

if rand() < M.p
c = decode(child, M.grammar, M.typ).n_rules_applied
if c < length(child)

child = child[1:c]
end

end
return child

end

Algorithm 20.7. The gene pruning
method used in grammatical evo-
lution.

before

after

Figure 20.8. Pruning truncates the
chromosome such that only active
genes remain.

struct MultiMutate <: MutationMethod
Ms

end
function mutate(M::MultiMutate, child)

for m in M.Ms
child = mutate(m, child)

end
return child

end

Algorithm 20.8. A
MutationMethod for applying
all mutation methods stored in the
vector Ms.
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Second, a small change in the chromosome may produce a large change in the
corresponding expression.

20.4 Probabilistic Grammars

A probabilistic grammar9 adds a weight to each rule in the genetic program’s gram- 9 T. L. Booth and R.A. Thompson,
‘‘Applying Probability Measures to
Abstract Languages,’’ IEEE Transac-
tions on Computers, vol. C-22, no. 5,
pp. 442–450, 1973.

mar. When sampling from all applicable rules for a given node, we select a rule
stochastically according to the relative weights. The probability of an expression is
the product of the probabilities of sampling each rule. Algorithm 20.9 implements
the probability calculation. Example 20.6 demonstrates sampling an expression
from a probabilistic grammar and computes its likelihood.

struct ProbabilisticGrammar
grammar
ws

end
function probability(probgram, node)

typ = return_type(probgram.grammar, node)
i = findfirst(isequal(node.ind), probgram.grammar[typ])
prob = probgram.ws[typ][i] / sum(probgram.ws[typ])
for (i,c) in enumerate(node.children)

prob *= probability(probgram, c)
end
return prob

end

Algorithm 20.9. Amethod for com-
puting the probability of an expres-
sion based on a probabilistic gram-
mar, where probgram is a proba-
bilistic grammar consisting of a
grammar grammar and a mapping
of types to weights for all applica-
ble rules ws, and node is a RuleNode
expression.

Optimization using a probabilistic grammar improves its weights with each
iteration using elite samples from a population. At each iteration, a population of
expressions is sampled and their objective function values are computed. Some
number of the best expressions are considered the elite samples and can be used
to update the weights. A new set of weights is generated for the probabilistic
grammar, where the weight wT

i for the ith production rule applicable to return
type T is set to the number of times the production rule was used in generating
the elite samples. This update procedure is implemented in algorithm 20.10.

The probabilistic grammars above can be extended to more complicated proba-
bility distributions that consider other factors, such as the depth in the expression
or local dependencies among siblings in subtrees. One approach is to use Bayesian
networks.10

10 P.K. Wong, L. Y. Lo, M. L. Wong,
and K. S. Leung, ‘‘Grammar-
Based Genetic Programming
with Bayesian Network,’’ in
IEEE Congress on Evolutionary
Computation (CEC), 2014.
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Consider a probabilistic grammar for strings composed entirely of ‘‘a’’s:

A 7→ a A wA
1 = 1

7→ a B a A wA
2 = 3

7→ ǫ wA
3 = 2

B 7→ a B wB
1 = 4

7→ ǫ wB
1 = 1

where we have a set of weights w for each parent type and ǫ is an empty
string.

Suppose we generate an expression starting with the type A. The proba-
bility distribution over the three possible rules is:

P(A 7→ a A) = 1/(1 + 3 + 2) = 1/6

P(A 7→ a B a A) = 3/(1 + 3 + 2) = 1/2

P(A 7→ ǫ) = 2/(1 + 3 + 2) = 1/3

Suppose we sample the second rule and obtain a B a A.
Next we sample a rule to apply to B. The probability distribution over the

two possible rules is:

P(B 7→ a B) = 4/(4 + 1) = 4/5

P(B 7→ ǫ) = 1/(4 + 1) = 1/5

Suppose we sample the second rule and obtain a ǫ a A.
Next we sample a rule to apply to A. Suppose we sample A 7→ ǫ to obtain

a ǫ a ǫ, which produces the ‘‘a’’-string ‘‘aa’’. The probability of the sequence
of rules applied to produce ‘‘aa’’ under the probabilistic grammar is:

P(A 7→ a B a A)P(B 7→ ǫ)P(A 7→ ǫ) =
1

2
· 1

5
· 1

3
=

1

30

Note that this is not the same as the probability of obtaining ‘‘aa’’, as other
sequences of production rules could also have produced it.

Example 20.6. Sampling an expres-
sion from a probabilistic grammar
and computing the expression’s
likelihood.
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function _update!(probgram, x)
grammar = probgram.grammar
typ = return_type(grammar, x)
i = findfirst(isequal(x.ind), grammar[typ])
probgram.ws[typ][i] += 1
for c in x.children

_update!(probgram, c)
end
return probgram

end
function update!(probgram, Xs)

for w in values(probgram.ws)
fill!(w,0)

end
for x in Xs

_update!(probgram, x)
end
return probgram

end

Algorithm 20.10. A method for ap-
plying a learning update to a prob-
abilistic grammar probgram based
on an elite sample of expressions
Xs.

20.5 Probabilistic Prototype Trees

The probabilistic prototype tree11 is a different approach that learns a distribution 11 R. Salustowicz and J. Schmid-
huber, ‘‘Probabilistic Incremental
Program Evolution,’’ Evolutionary
Computation, vol. 5, no. 2, pp. 123–
141, 1997.

for every node in the expression tree. Each node in a probabilistic prototype
tree contains a probability vector representing a categorical distribution over
the grammar’s production rules. The probability vectors are updated to reflect
knowledge gained from successive generations of expressions. The maximum
number of children for a node is the maximum number of nonterminals among
rules in the grammar.12 12 The arity of a function is the

number of arguments. The arity
of a grammar rule, which can be
viewed as a function, is the num-
ber of nonterminals in the rule.

Probability vectors are randomly initialized when a node is created. Random
probability vectors can be drawn from a Dirichlet distribution.13 The original im-

13 The Dirichlet distribution is of-
ten used to represent a distribu-
tion over discrete distributions. D.
Barber, Bayesian Reasoning and Ma-
chine Learning. Cambridge Univer-
sity Press, 2012.

plementation initializes terminals to a scalar value of 0.6 and nonterminals to 0.4.
In order to handle strongly-typed grammars we maintain a probability vector for
applicable rules to each parent type. Algorithm 20.11 defines a node type and
implements this initialization method.

Expressions are sampled using the probability vectors in the probabilistic
prototype tree. A rule in a node is drawn from the categorical distribution defined
by the node’s probability vector for the required return type, normalizing the
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struct PPTNode
ps
children

end
function PPTNode(grammar;

w_terminal = 0.6,
w_nonterm = 1-w_terminal,
)

ps = Dict(typ => normalize!([isterminal(grammar, i) ?
w_terminal : w_nonterm
for i in grammar[typ]], 1)

for typ in nonterminals(grammar))
PPTNode(ps, PPTNode[])

end
function get_child(ppt::PPTNode, grammar, i)

if i > length(ppt.children)
push!(ppt.children, PPTNode(grammar))

end
return ppt.children[i]

end

Algorithm 20.11. A probabilistic
prototype tree node type and asso-
ciated initialization functionwhere
ps is a dictionary mapping a sym-
bol corresponding to a return type
to a probability vector over applica-
ble rules, and children is a list of
PPTNodes. The method get_child
will automatically expand the tree
when attempting to access a non-
existent child.

associated probability vector values to obtain a valid probability distribution. The
tree is traversed in depth-first order. This sampling procedure is implemented in
algorithm 20.12 and visualized in figure 20.9.

Learning can use information either from an entire sampled population or
from elite samples. Let the best expression in the current generation be xbest and
the best expression found so far be xelite. The node probabilities are updated to
increase the likelihood of generating xbest.14 14 The original probabilistic proto-

type tree implementation will peri-
odically increase the likelihood of
generating xelite.

The probability of generating xbest is the product of the probabilities of choosing
each rule in xbest when traversing through the probabilistic prototype tree. We
compute a target probability for P(xbest):

Ptarget = P(xbest) + (1− P(xbest)) · α ·
ǫ− yelite
ǫ− ybest

(20.1)

where α and ǫ are positive constants. The fraction on the right-hand side produces
larger steps toward expressions with better objective function values. The target
probability can be calculated using algorithm 20.13.
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function rand(ppt, grammar, typ)
rules = grammar[typ]
rule_index = sample(rules, Weights(ppt.ps[typ]))
ctypes = child_types(grammar, rule_index)

arr = Vector{RuleNode}(undef, length(ctypes))
node = iseval(grammar, rule_index) ?

RuleNode(rule_index, eval(grammar, rule_index), arr) :
RuleNode(rule_index, arr)

for (i,typ) in enumerate(ctypes)
node.children[i] =

rand(get_child(ppt, grammar, i), grammar, typ)
end
return node

end

Algorithm 20.12. A method for
sampling an expression from a
probabilistic prototype tree. The
tree is expanded as needed.

p1

p1

p11

p111

p12

p1

p11 p12

p111 p112 p121 p122

×
ln

x

2

sample 1st expression
×

− +

3 x 2 7

sample 2nd expression

Figure 20.9. A probabilistic pro-
totype tree initially contains only
the root node but expands as ad-
ditional nodes are needed during
expression generation.

function probability(ppt, grammar, expr)
typ = return_type(grammar, expr)
i = findfirst(isequal(expr.ind), grammar[typ])
p = ppt.ps[typ][i]
for (i,c) in enumerate(expr.children)

p *= probability(get_child(ppt, grammar, i), grammar, c)
end
return p

end
function p_target(ppt, grammar, x_best, y_best, y_elite, α, ϵ)

p_best = probability(ppt, grammar, x_best)
return p_best + (1-p_best)*α*(ϵ - y_elite)/(ϵ - y_best)

end

Algorithm 20.13. Methods for com-
puting the probability of an ex-
pression and the target probabil-
ity, where ppt is the root node
of the probabilistic prototype tree,
grammar is the grammar, expr and
x_best are RuleNode expressions,
y_best and y_elite are scalar ob-
jective function values, and α and
ϵ are scalar parameters.
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The target probability is used to adjust the probability vectors in the proba-
bilistic prototype tree. The probabilities associated with the chosen nodes are
increased iteratively until the target probability is exceeded:

P
(

x
(i)
best
)

← P
(

x
(i)
best
)

+ c · α ·
(

1− P
(

x
(i)
best
))

for all i in {1, 2, . . .} (20.2)

where x
(i)
best is the ith rule applied in expression xbest and c is a scalar.15 15 A recommended value is c = 0.1.

The adapted probability vectors are then renormalized to 1 by downscaling the
values of all nonincreased vector components proportionally to their current value.
The probability vector p, where the ith component was increased, is adjusted
according to:

pj ← pj
1− pi

‖p‖1 − pi
for j 6= i (20.3)

The learning update is implemented in algorithm 20.14.

function _update!(ppt, grammar, x, c, α)
typ = return_type(grammar, x)
i = findfirst(isequal(x.ind), grammar[typ])
p = ppt.ps[typ]
p[i] += c*α*(1-p[i])
psum = sum(p)
for j in 1 : length(p)

if j != i
p[j] *= (1- p[i])/(psum - p[i])

end
end
for (pptchild,xchild) in zip(ppt.children, x.children)

_update!(pptchild, grammar, xchild, c, α)
end
return ppt

end
function update!(ppt, grammar, x_best, y_best, y_elite, α, c, ϵ)

p_targ = p_target(ppt, grammar, x_best, y_best, y_elite, α, ϵ)
while probability(ppt, grammar, x_best) < p_targ

_update!(ppt, grammar, x_best, c, α)
end
return ppt

end

Algorithm 20.14. A method for
applying a learning update to a
probabilistic prototype tree with
root ppt, grammar grammar, best
expression x_best with objective
function value y_best, elite objec-
tive function value y_elite, learn-
ing rate α, learning rate multiplier
c, and parameter ϵ.

In addition to population-based learning, probabilistic prototype trees can also
explore the design space via mutations. The tree is mutated to explore the region
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around xbest. Let p be a probability vector in a node that was accessed when
generating xbest. Each component in p is mutated with a probability proportional
to the problem size:

pmutation
#p
√

#xbest
(20.4)

where pmutation is a mutation parameter, #p is the number of components in p,
and #xbest is the number of rules applied in xbest. A component i, selected for
mutation, is adjusted according to:

pi ← pi + β · (1− pi) (20.5)

where β controls the amount of mutation. Small probabilities undergo larger
mutations than do larger probabilities. All mutated probability vectors must be
renormalized. Mutation is implemented in algorithm 20.15 and visualized in
figure 20.10.

function mutate!(ppt, grammar, x_best, p_mutation, β;
sqrtlen = sqrt(length(x_best)),
)
typ = return_type(grammar, x_best)
p = ppt.ps[typ]
prob = p_mutation/(length(p)*sqrtlen)
for i in 1 : length(p)

if rand() < prob
p[i] += β*(1-p[i])

end
end
normalize!(p, 1)
for (pptchild,xchild) in zip(ppt.children, x_best.children)

mutate!(pptchild, grammar, xchild, p_mutation, β,
sqrtlen=sqrtlen)

end
return ppt

end

Algorithm20.15. Amethod formu-
tating a probabilistic prototype tree
with root ppt, grammar grammar,
best expression x_best, mutation
parameter p_mutation, and muta-
tion rate β.

Finally, subtrees in the probabilistic prototype tree are pruned in order to
remove stale portions of the tree. A child node is removed if its parent contains
a probability component above a specified threshold such that, when chosen,
causes the child to be irrelevant. This is always the case for a terminal and may
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Figure 20.10. Mutating a prob-
ability vector in a probabilistic
prototype tree with β = 0.5.
The mutated components were
increased according to equa-
tion (20.5) and the resulting
probability vector was renor-
malized. Notice how smaller
probabilities receive greater
increases.

be the case for a nonterminal. Pruning is implemented in algorithm 20.16 and
demonstrated in example 20.7.

20.6 Summary

• Expression optimization allows for optimizing tree structures that, under a
grammar, can express sophisticated programs, structures, and other designs
lacking a fixed size.

• Grammars define the rules used to construct expressions.

• Genetic programming adapts genetic algorithms to perform mutation and
crossover on expression trees.

• Grammatical evolution operates on an integer array that can be decoded into
an expression tree.

• Probabilistic grammars learn which rules are best to generate, and probabilistic
prototype trees learn probabilities for every iteration of the expression rule
generation process.
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function prune!(ppt, grammar; p_threshold=0.99)
kmax, pmax = :None, 0.0
for (k, p) in ppt.ps

pmax′ = maximum(p)
if pmax′ > pmax

kmax, pmax = k, pmax′
end

end
if pmax > p_threshold

i = argmax(ppt.ps[kmax])
if isterminal(grammar, i)

empty!(ppt.children[kmax])
else

max_arity_for_rule = maximum(nchildren(grammar, r) for
r in grammar[kmax])

while length(ppt.children) > max_arity_for_rule
pop!(ppt.children)

end
end

end
return ppt

end

Algorithm 20.16. A method for
pruning a probabilistic prototype
tree with root ppt, grammar
grammar, and pruning probability
threshold p_treshold.

Consider a node with a probability vector over the rule set:

R 7→ R + R

R 7→ ln(R)

R 7→ 2 | x

R 7→ S

If the probability of selecting 2 or x grows large, then any children in the
probabilistic prototype tree are unlikely to be needed and can be pruned.
Similarly, if the probability of choosing S grows large, any children with
return type R are unneeded and can be pruned.

Example 20.7. An example of
when pruning for probabilistic pro-
totype trees should be applied.
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20.7 Exercises

Exercise 20.1. How many expression trees can be generated using the following
grammar and the starting set {R, I, F}?

R 7→ I | F

I 7→ 1 | 2

F 7→ π

Exercise 20.2. The number of expression trees up to height h that can be generated
under a grammar grows super-exponentially. As a reference, calculate the number
of expressions of height h can be generated using the grammar:16 16 Let an empty expression have

height 0, the expression {} have
height 1, and so on.N 7→ {N, N} | {N, } | {, N} | {} (20.6)

Exercise 20.3. Define a grammar which can generate any nonnegative integer.

Exercise 20.4. How do expression optimization methods handle divide-by-zero
values or other exceptions encountered when generating random subtrees?

Exercise 20.5. Consider an arithmetic grammar such as:

R 7→ x | y | z | R + R | R−R | R×R | R/R | ln R | sin R | cos R

Suppose the variables x, y, and z each have units, and the output is expected to
be in particular units. How might such a grammar be modified to respect units?

Exercise 20.6. Consider the grammar

S 7→ NP VP

NP 7→ ADJ NP | ADJ N

VP 7→ V ADV

ADJ 7→ a | the | big | little | blue | red
N 7→ mouse | cat | dog | pony
V 7→ ran | sat | slept | ate

ADV 7→ quietly | quickly | soundly | happily

What is the phenotype corresponding to the genotype [2, 10, 19, 0, 6] and the
starting symbol S?
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Exercise 20.7. Use genetic programming to evolve the gear ratios for a clock. As-
sume all gears are restricted to have radii selected fromR = {10, 25, 30, 50, 60, 100}.
Each gear can either be attached to its parent’s axle, thereby sharing the same
rotation period, or be interlocked on its parent’s rim, thereby having a rotation
period depending on the parent’s rotation period and on the gear ratio as shown
in figure 20.11.

The clock can also contain hands, which are mounted on the axle of a parent
gear. Assume the root gear turns with a period of troot = 0.1 s and has a radius of
25. The objective is to produce a clock with a second, minute, and hour hand.

rp

rc

tc = tp
rc
rp

Figure 20.11. The rotation period
tc of a child gear attached to the
rim of a parent gear depends on
the rotation period of the parent
gear, tp and the ratio of the gears’
radii.

Score each individual according to:

(

minimize
hands

(1− thand)
2

)

+

(

minimize
hands

(60− thand)
2

)

+

(

minimize
hands

(3600− thand)
2

)

+ #nodes · 10−3

where thand is the rotation period of a particular hand in seconds and #nodes is
the number of nodes in the expression tree. Ignore rotation direction.

Exercise 20.8. The four 4s puzzle17 is a mathematical challenge in which we use 17 W.W.R. Ball, Mathematical Recre-
ations and Essays. Macmillan, 1892.four 4 digits and mathematical operations to generate expressions for each of the

integers from 0 to 100. For example, the first two integers can be produced by
4 + 4− 4− 4 and 44/44, respectively. Complete the four 4s puzzle.

Exercise 20.9. Consider the probabilistic grammar

R 7→ R + R | R×R | F | I wR = [1, 1, 5, 5]

F 7→ 1.5 | ∞ pF = [4, 3]

I 7→ 1 | 2 | 3 pI = [1, 1, 1]

What is the generation probability of the expression 1.5 + 2?

Exercise 20.10. What is the probabilistic grammar from the previous question
after clearing the counts and applying a learning update on 1.5 + 2?





21 Multidisciplinary Optimization

Multidisciplinary design optimization (MDO) involves solving optimization prob-
lems spanning across disciplines. Many real-world problems involve complicated
interactions between several disciplines, and optimizing disciplines individually
may not lead to an optimal solution. This chapter discusses a variety of tech-
niques for taking advantage of the structure of MDO problems to reduce the
effort required for finding good designs.1 1 An extensive survey is provided

by J. R. R.A. Martins and A. B.
Lambe, ‘‘Multidisciplinary Design
Optimization: A Survey of Archi-
tectures,’’ AIAA Journal, vol. 51,
no. 9, pp. 2049–2075, 2013. Fur-
ther discussion can be found in J.
Sobieszczanski-Sobieski, A. Mor-
ris, and M. van Tooren, Multidis-
ciplinary Design Optimization Sup-
ported by Knowledge Based Engineer-
ing. Wiley, 2015. See also N.M.
Alexandrov and M.Y. Hussaini,
eds., Multidisciplinary Design Op-
timization: State of the Art. SIAM,
1997.

21.1 Disciplinary Analyses

There are many different disciplinary analyses that might factor into a design. For
example, the design of a rocket might involve analysis from disciplines such
as structures, aerodynamics, and controls. The different disciplines have their
own analytical tools, such as finite element analysis. Often these disciplinary
analyses tend to be quite sophisticated and computationally expensive. In addi-
tion, disciplinary analyses are often tightly coupled with each other, where one
discipline may require the output of another’s disciplinary analysis. Resolving
these interdependencies can be nontrivial.

In an MDO setting, we still have a set of design variables as before, but we also
keep track of the outputs, or response variables, of each disciplinary analysis.2 We 2 A disciplinary analysis can pro-

vide inputs for other disciplines,
the objective function, or the con-
straints. In addition, it can also pro-
vide gradient information for the
optimizer.

write the response variables of the ith disciplinary analysis as y(i). In general, the
ith disciplinary analysis Fi can depend on the design variables or the response
variables from any other discipline:

y(i) ← Fi

(

x, y(1), . . . , y(i−1), y(i+1), . . . , y(m)
)

(21.1)

where m is the total number of disciplines. The inputs to a computational fluid
dynamics analysis for an aircraft may include the deflections of the wing, which
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come from a structural analysis that requires the forces from computational fluid
dynamics. An important part of formulatingMDOproblems is taking into account
such dependencies between analyses.

In order to make reasoning about disciplinary analyses easier, we introduce
the concept of an assignment. An assignment A is a set of variable names and
their corresponding values relevant to a multidisciplinary design optimization
problem. To access a variable v, we write A[v].

A disciplinary analysis is a function that takes an assignment and uses the
design point and response variables from other analyses to overwrite the response
variable for its discipline:

A′ ← Fi(A) (21.2)
where Fi(A) updates y(i) in A to produce A′.

Assignments can be represented in code using dictionaries.3 Each variable 3 A dictionary, also called an as-
sociative array, is a common data
structure that allows indexing by
keys rather than integers. See ap-
pendix A.1.7.

is assigned a name of type String. Variables are not restricted to floating-point
numbers but can include other objects, such as vectors. Example 21.1 shows an
implementation using a dictionary.

Consider an optimization with one design variable x and two disciplines.
Suppose the first disciplinary analysis F1 computes a response variable
y(1) = f1(x, y(2)) and the second disciplinary analysis F2 computes a re-
sponse variable y(2) = f2(x, y(1)).

This problem can be implemented as:
function F1(A)

A["y1"] = f1(A["x"], A["y2"])
return A

end
function F2(A)

A["y2"] = f2(A["x"], A["y1"])
return A

end

The assignment may be initialized with guesses for y(1) and y(2), and a
known input for x. For example:
A = Dict("x"=>1, "y1"=>2, "y2"=>3)

Example 21.1. Basic code syntax for
the assignment-based representa-
tion ofmultidisciplinary design op-
timization problems.
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21.2 Interdisciplinary Compatibility

Evaluating the objective function value and feasibility of a design point x re-
quires obtaining values for the response variables that satisfy interdisciplinary
compatibility, which means that the response variables must be consistent with
the disciplinary analyses. Interdisciplinary compatibility holds for a particular
assignment if the assignment is unchanged under all disciplinary analyses:

Fi(A) = A for i ∈ {1, . . . , m} (21.3)

Running any analysis will produce the same values. Finding an assignment that
satisfies interdisciplinary compatibility is called a multidisciplinary analysis.

System optimization for a single discipline requires an optimizer to select
design variables and query the disciplinary analysis in order to evaluate the
constraints and the objective function, as shown in figure 21.1. Single-discipline
optimization does not require that we consider disciplinary coupling.

minimize
x

f (x, y)

subject to [x, y] ∈ X
Disciplinary
Analysis

Optimizer
x

y

Figure 21.1. Optimization diagram
for a single discipline. Gradients
may or may not be computed.

System optimization for multiple disciplines can introduce dependencies, in
which case coupling becomes an issue. A diagram for two coupled disciplines is
given in figure 21.2. Applying conventional optimization to this problem is less
straightforward because interdisciplinary compatibility must be established.

minimize
x

f (x, y(1), y(2))

subject to [x, y(1), y(2)] ∈ X

Optimizer
Disciplinary
Analysis 1x

y(1)

Disciplinary
Analysis 2

x

y(2)

y(1) y(2)

Figure 21.2. Optimization diagram
for a two-discipline analysis with
interdisciplinary coupling.
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If a multidisciplinary analysis does not have a dependency cycle,4 then solving 4 A dependency cycle arises when
disciplines depend on each other.for interdisciplinary compatibility is straightforward. We say discipline i depends

on discipline j if i requires any of j’s outputs. This dependency relation can be
used to form a dependency graph, where each node corresponds to a discipline and
an edge j→ i is included if discipline i depends on j. Figure 21.3 shows examples
of dependency graphs involving two disciplines with and without cycles.

Structural Analysis

Cost Forecast

Structural Analysis

Aerodynamics Analysis

An acyclic dependency graph. An evaluation
ordering can be specified such that the required
inputs for each discipline are available from
previously evaluated disciplines.

A cyclic dependency graph. The structural
analysis depends on the aerodynamics analysis
and vice versa.

Figure 21.3. Cyclic and acyclic de-
pendency graphs.

If the dependency graph has no cycles, then there always exists an order of
evaluation that, if followed, ensures that the necessary disciplinary analyses are
evaluated before the disciplinary analyses that depend on them. Such an ordering
is called a topological ordering and can be found using a topological sorting method
such as Kahn’s algorithm.5 The reordering of analyses is illustrated in figure 21.4. 5 A.B. Kahn, ‘‘Topological Sorting

of Large Networks,’’ Communica-
tions of the ACM, vol. 5, no. 11,
pp. 558–562, 1962.

If the dependency graph has cycles, then no topological ordering exists. To
address cycles, we can use the Gauss-Seidel method (algorithm 21.1), which at-
tempts to resolve the multidisciplinary analysis by iterating until convergence.6 6 The Gauss-Seidel algorithm can

also be written to execute analyses
in parallel.The Gauss-Seidel algorithm is sensitive to the ordering of the disciplines as illus-

trated by example 21.2. A poor ordering can prevent or slow convergence. The
best orderings are those with minimal feedback connections.7 7 In some cases, disciplines can

be separated into different clus-
ters that are independent of each
other. Each connected cluster can
be solved using its own, smaller
multidisciplinary analysis.

It can be advantageous to merge disciplines into a new disciplinary analysis—
to group conceptually related analyses, simultaneously evaluate tightly coupled
analyses, or more efficiently apply some of the architectures discussed in this
chapter. Disciplinary analyses can be merged to form a new analysis whose
response variables consist of the response variables of the merged disciplines.
The form of the new analysis depends on the disciplinary interdependencies. If
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Figure 21.4. A topological sort can
be used to reorder the disciplinary
analyses to remove feedback con-
nections.

function gauss_seidel!(Fs, A; k_max=100, ϵ=1e-4)
k, converged = 0, false
while !converged && k ≤ k_max

k += 1
A_old = deepcopy(A)
for F in Fs

F(A)
end
converged = all(isapprox(A[v], A_old[v], rtol=ϵ)

for v in keys(A))
end
return (A, converged)

end

Algorithm 21.1. The Gauss-Seidel
algorithm for conducting a multi-
disciplinary analysis. Here, Fs is a
vector of disciplinary analysis func-
tions that take and modify an as-
signment, A. There are two optional
arguments: the maximum number
of iterations k_max and the relative
error tolerance ϵ. The method re-
turns themodified assignment and
whether it converged.
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Consider a multidisciplinary design optimization problem with one design
variable x and three disciplines, each with one response variable:

y(1) ← F1(x, y(2), y(3)) = y(2) − x

y(2) ← F2(x, y(1), y(3)) = sin(y(1) + y(3))

y(3) ← F3(x, y(1), y(2)) = cos(x + y(1) + y(2))

The disciplinary analyses can be implemented as:
function F1(A)

A["y1"] = A["y2"] - A["x"]
return A

end
function F2(A)

A["y2"] = sin(A["y1"] + A["y3"])
return A

end
function F3(A)

A["y3"] = cos(A["x"] + A["y2"] + A["y1"])
return A

end

Consider running amultidisciplinary analysis for x = 1, having initialized
our assignment with all 1’s:
A = Dict("x"=>1, "y1"=>1, "y2"=>1, "y3"=>1)

Running the Gauss-Seidel algorithmwith the ordering F1, F2, F3 converges,
but running with F1, F3, F2 does not.

−2

−1

0

1 y(1)

y(2)

y(3)

0 5 10 15 20

−2

−1

0

1

iteration

Example 21.2. An example that il-
lustrates the importance of choos-
ing an appropriate ordering when
running a multidisciplinary analy-
sis.
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the merged disciplines are acyclic then an ordering exists in which the analyses
can be serially executed. If the merged disciplines are cyclic, then the new analysis
must internally run a multidisciplinary analysis to achieve compatibility.

21.3 Architectures

Multidisciplinary design optimization problems can be written:

minimize
x

f (A)

subject to A ∈ X
Fi(A) = A for each discipline i ∈ {1, . . . , m}

(21.4)

where the objective function f and feasible set X depend on both the design and
response variables. The design variables in the assignment are specified by the
optimizer. The condition Fi(A) = A ensures that the ith discipline is consistent
with the values in A. This last condition enforces interdisciplinary compatibility.

There are several challenges associated with optimizing multidisciplinary
problems. The interdependence of disciplinary analyses causes the ordering
of analyses to matter and often makes parallelization difficult or impossible.
There is a trade-off between an optimizer that directly controls all variables
and incorporating suboptimizers8 that leverage discipline-specific expertise to 8 A suboptimizer is an optimization

routine called within another opti-
mization routine.optimize values locally. In addition, there is a trade-off between the expense of

running disciplinary analyses and the expense of globally optimizing too many
variables. Finally, every architecture must enforce interdisciplinary compatibility
in the final solution.

The remainder of this chapter discusses a variety of different optimization ar-
chitectures for addressing these challenges. These architectures are demonstrated
using the hypothetical ride-sharing problem introduced in example 21.3.

21.4 Multidisciplinary Design Feasible

The multidisciplinary design feasible architecture structures the MDO problem such
that standard optimization algorithms can be directly applied to optimize the
design variables. A multidisciplinary design analysis is run for any given design
point to obtain compatible response values.
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Consider a ride-sharing company developing a self-driving fleet. This hypo-
thetical company is simultaneously designing the vehicle, its sensor package,
a routing strategy, and a pricing scheme. These portions of the design are
referred to as v, s, r, and p, respectively, each of which contains numerous
design variables. The vehicle, for instance, may include parameters govern-
ing the structural geometry, engine and drive train, battery capacity, and
passenger capacity.

The objective of the ride-sharing company is to maximize profit. The
profit depends on a large-scale simulation of the routing algorithm and
passenger demand, which, in turn, depends on response variables from an
autonomy analysis of the vehicle and its sensor package. Several analyses
extract additional information. The performance of the routing algorithm
depends on the demand generated by the pricing scheme and the demand
generated by the pricing scheme depends on performance of the routing
algorithm. The vehicle range and fuel efficiency depends on the weight, drag,
and power consumption of the sensor package. The sensor package requires
vehicle geometry and performance information to meet the necessary safety
requirements. A dependency diagram is presented below.

Vehicle Analysis

Sensor Analysis

Autonomy Analysis

Routing Analysis

Demand Analysis

Profit Analysis

Example 21.3. A ride-sharing prob-
lem used throughout this chapter
to demonstrate optimization archi-
tectures.
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minimize
x

f (A)

subject to A ∈ X
Multidisciplinary

Analysis

Optimizer
update x

update y(1), . . . , y(m)

Figure 21.5. The multidisciplinary
design feasible architecture. The
optimizer chooses design points x,
and the multidisciplinary analysis
computes a consistent assignment
A. The structure is similar to that
of single-discipline optimization.

minimize
x

f
(

x, y(1), . . . , y(m)
)

subject to
[

x, y(1), . . . , y(m)
]

∈ X

minimize
x

f (MDA(x))

subject to MDA(x) ∈ X

Figure 21.6. Formulating an
MDO problem into a typical
optimization problem using
multidisciplinary design anal-
yses, where MDA(x) returns a
multidisciplinary compatible
assignment.

An architecture diagram is given in figure 21.5. It consists of two blocks, the
optimizer and the multidisciplinary analysis. The optimizer is the method used
for selecting design points with the goal of minimizing the objective function. The
optimizer calls the multidisciplinary analysis block by passing it a design point
x and receives a compatible assignment A. If interdisciplinary compatibility is
not possible, the multidisciplinary analysis block informs the optimizer and such
design points are treated as infeasible. Figure 21.6 shows how an MDO problem
can be transformed into a typical optimization problem using multidisciplinary
design analyses.

The primary advantages of the multidisciplinary design feasible architecture
are its conceptual simplicity and that it is guaranteed to maintain interdisciplinary
compatibility at each step in the optimization. Its name reflects the fact that
multidisciplinary design analyses are run at every design evaluation, ensuring
that the system-level optimizer only considers feasible designs.

The primary disadvantage is that multidisciplinary design analyses are ex-
pensive to run, typically requiring several iterations over all analyses. Iterative
Gauss-Seidel methods may be slow to converge or may not converge at all, de-
pending on the initialization of the response variables and the ordering of the
disciplinary analyses.

Lumping the analyses together makes it necessary for all local variables—
typically only relevant to a particular discipline—to be considered by the analysis
as a whole. Many practical problems have a very large number of local design
variables, such as mesh control points in aerodynamics, element dimensions in
structures, component placements in electrical engineering, and neural network
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weights in machine learning. Multidisciplinary design feasible optimization re-
quires that the system optimizer specify all of these values across all disciplines
while satisfying all constraints.

The multidisciplinary design feasible architecture is applied to the ride-sharing
problem in example 21.4.

The multidisciplinary design feasible architecture can be applied to the ride-
sharing problem. The architectural diagram is shown below.

minimize
v,s,r,p

f
(

v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)
)

subject to
[

v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)
]

∈ X

Multidisciplinary Analysis

Optimizer

update v, s, r, pupdate y(v), y(s), y(a), y(r), y(d), y(p)

Example 21.4. The multidisci-
plinary design feasible architecture
applied to the ride-sharing prob-
lem. A multidisciplinary analysis
over all response variables must be
completed for every candidate de-
sign point. This tends to be very
computationally intensive.

21.5 Sequential Optimization

The sequential optimization architecture (figure 21.7) is an architecture that can
leverage discipline-specific tools and experience to optimize subproblems but
can lead to suboptimal solutions. This architecture is included to demonstrate
the limitations of a naive approach and to serve as a baseline against which other
architectures can be compared.

A subproblem is an optimization procedure conducted at every iteration of an
overarching optimization process. Sometimes design variables can be removed
from the outer optimization procedure, the system-level optimizer, and can be more
efficiently optimized in subproblems.

The design variables for the ith discipline can be partitioned according to
x(i) = [x

(i)
g , x

(i)
ℓ
], where x

(i)
g are global design variables shared with other disciplines

and x
(i)
ℓ

are local design variables used only by the associated disciplinary subprob-
lem.9 The response variables can be similarly partitioned into the global response

9 The vehicle subproblem in the
ride-sharing problem may include
global design variables such as the
vehicle capacity and range that af-
fect other disciplines but may also
include local design variables such
as the seating configuration that do
not impact other disciplines.variables y

(i)
g and the local response variables y

(i)
ℓ

. Disciplinary autonomy is
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minimize
xg

f (A) subject toA ∈ X

minimize
x
(1)
ℓ

f1(A) subject to [x(1), y(1)] ∈ X1
Disciplinary
Analysis 1

update x
(1)
ℓ

update y(1)

minimize
x
(2)
ℓ

f2(A) subject to [x(2), y(2)] ∈ X2
Disciplinary
Analysis 2

update x
(2)
ℓ

update y(2)

minimize
x
(m)
ℓ

fm(A) subject to [x(m), y(m)] ∈ Xm
Disciplinary
Analysis m

update x
(m)
ℓ

update y(m)

update xg

...

Figure 21.7. The sequential opti-
mization architecture. Each sub-
problem is represented by a blue
block and optimizes a particular
discipline on a local objective func-
tion.
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achieved by optimizing the local variables in their own disciplinary optimizers. A
local objective function fi must be chosen such that optimizing it also benefits the
global objective. A top-level optimizer is responsible for optimizing the global
design variables xg with respect to the original objective function. An instanti-
ation of xg is evaluated through sequential optimizations; each subproblem is
optimized one after the other, passing its results to the next subproblem until all
have been evaluated.

Sequential optimization takes advantage of the locality of disciplines; that
many variables are unique to a particular discipline and do not need to be shared
across discipline boundaries. Sequential optimization harnesses each discipline’s
proficiency at solving its discipline-specific problem. The subproblem optimizers
have complete control over their discipline-specific design variables to meet local
design objectives and constraints.

Except in special cases, sequential optimization does not lead to an optimal
solution of the original problem for the same reason that Gauss-Seidel is not
guaranteed to converge. The solution is sensitive to the local objective functions,
and finding suitable local objective functions is often a challenge. Sequential opti-
mization does not support parallel execution, and interdisciplinary compatibility
is enforced through iteration and does not always converge.

Example 21.5 applies sequential optimization to the ride-sharing problem.

21.6 Individual Discipline Feasible

The individual discipline feasible (IDF) architecture removes the need to run ex-
pensive multidisciplinary design analyses and allows disciplinary analyses to
be executed in parallel. It loses the guarantee that interdisciplinary compatibil-
ity is maintained throughout its execution, with eventual agreement enforced
through equality constraints in the optimizer. Compatibility is not enforced in
multidisciplinary analyses but rather by the optimizer itself.

IDF introduces coupling variables to the design space. For each discipline, an
additional vector c(i) is added to the optimization problem to act as aliases for
the response variables y(i). The response variables are unknown until they are
computed by their respective domain analyses; inclusion of the coupling vari-
ables allows the optimizer to provide these estimates to multiple disciplines
simultaneously when running analyses in parallel. Equality between the cou-
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The sequential optimization architecture can optimize some variables locally.
Figure 21.8 shows the result of applying sequential optimization to the ride-
sharing problem.

The design variables for the vehicle, sensor system, routing algorithm, and
pricing scheme are split into local discipline-specific variables and top-level
global variables. For example, the vehicle subproblem can optimize local
vehicle parameters vℓ such as drive train components, whereas parameters
like vehicle capacity that are used by other analyses are controlled globally
in vg.

The tight coupling between the vehicle and sensor systems is poorly han-
dled by the sequential optimization architecture. While changes made by
the vehicle subproblem are immediately addressed by the sensor subprob-
lem, the effect of the sensor subproblem on the vehicle subproblem is not
addressed until the next iteration.

Not all analyses require their own subproblems. The profit analysis is
assumed not to have any local design variables and can thus be executed
without needing a subproblem block.

Example 21.5. Sequential optimiza-
tion for the ride-sharing problem.
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minimize
vg ,sg ,rg ,pg

f (A) subject to A ∈ X

minimize
vℓ

fv(A) subject to [vℓ, y(v)] ∈ Xv
Vehicle
Analysis

update vℓ

update y(v)

minimize
sℓ

fs(A) subject to [sℓ, y(s)] ∈ Xs
Sensor

Analysis

update sℓ

update y(s)

minimize
aℓ

fa(A) subject to [aℓ, y(a)] ∈ Xa
Autonomy
Analysis

update aℓ

update y(a)

minimize
rℓ

fr(A) subject to [rℓ, y(r)] ∈ Xr
Routing
Analysis

update rℓ

update y(r)

minimize
dℓ

fd(A) subject to [dℓ, y(d)] ∈ Xd
Demand
Analysis

update dℓ

update y(d)

Profit
Analysis

update vg, sg, rg, pg

Figure 21.8. The sequential opti-
mization architecture applied to
the ride-sharing problem.
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pling and response variables is typically reached through iteration. Equality is an
optimization constraint, c(i) = y(i), for each discipline.

Figure 21.9 shows the general IDF architecture. The system-level optimizer
operates on the coupling variables and uses these to populate an assignment that
is copied to the disciplinary analysis in each iteration:

A[x, y(1), . . . , y(m)]← [x, c(1), . . . , c(m)] (21.5)

minimize
x,c(1) ,...,c(m)

f (x, c(1), . . . , c(m))

subject to [x, c(1), . . . , c(m)] ∈ X
c(i) = y(i) for i ∈ {1, . . . , m}

Disciplinary
Analysis 1

Disciplinary
Analysis 2

Disciplinary
Analysis m

...

update y(1)

update y(2)

update y(m)

copy of A

copy of A

copy of A

Figure 21.9. The individual disci-
pline feasible architecture allows
disciplinary analyses to be run in
parallel. This chapter assumes that
disciplinary analyses mutate their
inputs, so copies of the system level
optimizer’s assignment are passed
to each disciplinary analysis.

x1

x2

Figure 21.10. The search direction
for a point on a constraint bound-
ary must lead into the feasible set.

Despite the added freedom to execute analyses in parallel, IDF suffers from
the shortcoming that it cannot leverage domain-specific optimization procedures
in the same way as sequential optimization as optimization is top-level only. Fur-
thermore, the optimizer must satisfy additional equality constraints and has more
variables to optimize. IDF can have difficulties with gradient-based optimization
since the chosen search direction must take constraints into account as shown in
figure 21.10. Changes in the design variables must not cause the coupling vari-
ables to become infeasible with respect to the disciplinary analyses. Evaluating
the gradients of the objective and constraint function is very costly when the
disciplinary analyses are expensive.

The individual discipline feasible architecture is applied to the ride-sharing
problem in figure 21.11.
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minimize
v,s,r,p,c(v) ,c(s) ,c(a) ,c(r) ,c(d) ,c(p)

f (v, s, r, p, c(v), c(s), c(a), c(r), c(p))

subject to
[

v, s, r, p, c(v), c(s), c(a), c(r), c(d), c(p)
]

∈ X
[

c(v), c(s), c(a), c(r), c(d), c(p)
]

= [y(v), y(s), y(a), y(r), c(d), y(p)]

Vehicle Analysis

Sensor Analysis

Autonomy Analysis

Routing Analysis

Demand Analysis

Profit Analysis

update y(v)

update y(s)

update y(a)

update y(r)

update y(d)

update y(p)

copy of A

copy of A

copy of A

copy of A

copy of A

copy of A

Figure 21.11. The individual disci-
pline feasible architecture applied
to the ride-sharing problem. The
individual design feasible architec-
ture allows for parallel execution of
analyses, but the system-level opti-
mizer must optimize a large num-
ber of variables.
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21.7 Collaborative Optimization

The collaborative optimization architecture (figure 21.12) breaks a problem into
disciplinary subproblems that have full control over their local design variables
and discipline-specific constraints. Subproblems can be solved using discipline-
specific tools and can be optimized in parallel.

The ith subproblem has the form:
minimize

x(i)
fi(x

(i), y(i))

subject to [x(i), y(i)] ∈ Xi

(21.6)

with x(i) containing a subset of the design variables x and response variables y(i).
The constraint ensures that the solution satisfies discipline-specific constraints.

Interdisciplinary compatibility requires that the global variables x
(i)
g and y

(i)
g

agree between all disciplines. We define a set of coupling variables Ag that in-
cludes variables corresponding to all design and response variables that are global
in at least one subproblem. Agreement is enforced by constraining each x

(i)
g and

y
(i)
g to match its corresponding coupling variables:

x
(i)
g = Ag[x

(i)
g ] and y

(i)
g = Ag[y

(i)
g ] (21.7)

whereAg[x
(i)
g ] andAg[y

(i)
g ] are the coupling variables corresponding to the global

design and response variables in the ith discipline. This constraint is enforced
using the subproblem objective function:

fi =
∥
∥
∥x

(i)
g −Ag[x

(i)
g ]
∥
∥
∥

2

2
+
∥
∥
∥y

(i)
g −Ag[y

(i)
g ]
∥
∥
∥

2

2
(21.8)

Each subproblem thus seeks feasible solutions that minimally deviate from the
coupling variables.

The subproblems are managed by a system-level optimizer that is responsible
for optimizing the coupling variablesAg to minimize the objective function. Eval-
uating an instance of the coupling variables requires running each disciplinary
subproblem, typically in parallel.

Disciplinary subproblems may deviate from the coupling variables during
the optimization process. This discrepancy occurs when two or more disciplines
disagree on a variable or when subproblem constraints prevent matching the
target values set by the system-level optimizer. The top-level constraint that fi = 0

for each discipline ensures that coupling is eventually attained.



404 chapter 21. multidisciplinary optimization

minimize
Ag

f (Ag) subject to fi = 0 for i ∈ {1, . . . , m}

minimize
x(1)

f1 =
∥
∥
∥x

(1)
g −Ag[x

(1)
g ]
∥
∥
∥

2

2
+
∥
∥
∥y

(1)
g −Ag[y

(1)
g ]
∥
∥
∥

2

2

subject to [x(1), y(1)] ∈ X1

minimize
x(2)

f2 =
∥
∥
∥x

(2)
g −Ag[x

(2)
g ]
∥
∥
∥

2

2
+
∥
∥
∥y

(2)
g −Ag[y

(2)
g ]
∥
∥
∥

2

2

subject to [x(2), y(2)] ∈ X2

minimize
x(m)

fm =
∥
∥
∥x

(m)
g −Ag[x

(m)
g ]

∥
∥
∥

2

2
+
∥
∥
∥y

(m)
g −Ag[y

(m)
g ]

∥
∥
∥

2

2

subject to [x(m), y(m)] ∈ Xm

f1

f2

fm

Ag

Ag

Ag

...

Figure 21.12. Design architecture
for collaborative optimization.

The primary advantages of collaborative optimization stem from its ability
to isolate some design variables into disciplinary subproblems. Collaborative
optimization is readily applicable to real-worldmultidisciplinary problem solving,
as each discipline is typically well segregated, and thus largely unaffected by
small decisions made in other disciplines. The decentralized formulation allows
traditional discipline optimization methods to be applied, allowing problem
designers to leverage existing tools and methodologies.

Collaborative optimization requires optimizing over the coupling variables,
which includes both design and response variables. Collaborative optimization
does not perform well in problems with high coupling because the additional
coupling variables can outweigh the benefits of local optimization.

Collaborative optimization is a distributed architecture that decomposes a single
optimization problem into a smaller set of optimization problems that have the
same solution when their solutions are combined. Distributed architectures have
the advantage of reduced solving times, as subproblems can be optimized in
parallel.

Collaborative optimization is applied to the ride-sharing problem in exam-
ple 21.6.
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The collaborative optimization architecture can be applied to the vehicle
routing problem by producing six different disciplinary subproblems. Un-
fortunately, having six different subproblems requires any variables shared
across disciplines to be optimized at the global level.

Figure 21.13 shows two disciplinary subproblems obtained by grouping
the vehicle, sensor, and autonomy disciplines into a transport subproblem
and the routing, demand, and profit disciplines into a network subprob-
lem. The disciplines grouped into each subproblem are tightly coupled.
Having only two subproblems significantly reduces the number of global
variables considered by the system-level optimizer because presumably very
few design variables are directly used by both the transport and network
subproblems.

The subproblems are eachmultidisciplinary optimization problems, them-
selves amenable to optimization using the techniques covered in this chapter.
We can, for example, use sequential optimization within the transport sub-
problem. We can also add another instance of collaborative optimization
within the network subproblem.

Example 21.6. Applying collab-
orative optimization to the ride-
sharing problem.

minimize
Ag

f (Ag) subject to ftransport = fnetwork = 0

minimize
x(transport)

ftransport =
∥
∥
∥x

(transport)
g −Ag[x

(transport)
g ]

∥
∥
∥

2

2
+
∥
∥
∥y

(transport)
g −Ag[y

(transport)
g ]

∥
∥
∥

2

2

subject to [x(transport), y(transport)] ∈ Xtransport

minimize
x(network)

fnetwork =
∥
∥
∥x

(network)
g −Ag[x

(network)
g ]

∥
∥
∥

2

2
+
∥
∥
∥y

(network)
g −Ag[y

(network)
g ]

∥
∥
∥

2

2

subject to [x(network), y(network)] ∈ Xnetwork

Figure 21.13. The collaborative op-
timization architecture applied to
the ride-sharing problem. The col-
ored circles correspond to the disci-
plinary analyses contained within
each subproblem.
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21.8 Simultaneous Analysis and Design

The simultaneous analysis and design (SAND) architecture avoids the central chal-
lenge of coordinating between multiple disciplinary analyses by having the op-
timizer conduct the analyses. Instead of running an analysis Fi(A) to obtain a
residual, SAND optimizes both the design and response variables subject to a
constraint Fi(A) = A. The optimizer is responsible for simultaneously optimizing
the design variables and finding the corresponding response variables.

Any disciplinary analysis can be transformed into residual form. The residual
ri(A) is used to indicate whether an assignment A is compatible with the ith
discipline. If Fi(A) = A, then ri(A) = 0; otherwise, ri(A) 6= 0. We can obtain a
residual form using the disciplinary analysis:

ri(A) =
∥
∥
∥Fi(A)−A[y(i)]

∥
∥
∥ (21.9)

though this is typically inefficient, as demonstrated in example 21.7.

Consider a disciplinary analysis that solves the equation Ay = x. The analysis
is F(x) = A−1x, which requires an expensive matrix inversion. We can
construct a residual form using equation (21.9):

r1(x, y) = ‖F(x)− y‖ =
∥
∥
∥A−1x− y

∥
∥
∥

Alternatively, we can use the original constraint to construct a more efficient
residual form:

r2(x, y) = ‖Ay− x‖

Example 21.7. Evaluating a dis-
ciplinary analysis in a residual is
typically counter-productive. The
analysis must typically perform ad-
ditional work to solve the problem
whereas a cleaner residual form
can more efficiently verify whether
the inputs are compatible.

The residual form of a discipline consists of the set of disciplinary equations
that are solved by the disciplinary analysis.10 It is often much easier to evaluate a

10 In aerodynamics, these may in-
clude the Navier-Stokes equations.
In structural engineering, these
may include the elasticity equa-
tions. In electrical engineering,
these may include the differential
equations for current flow.

residual than to run a disciplinary analysis. In SAND, figure 21.14, the analysis
effort is the responsibility of the optimizer.

minimize
A

f (A) subject to A ∈ X , ri(A) = 0 for each discipline
Figure 21.14. Simultaneous anal-
ysis and design places the entire
burden on the optimizer. It uses
disciplinary residuals rather than
disciplinary analyses.SAND can explore regions of the design space that are infeasible with respect

to the residual equations, as shown in figure 21.15. Exploring infeasible regions
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can allow us to traverse the design space more easily and find solutions in feasible
regions disconnected from the feasible region of the starting design point. SAND
suffers from having to simultaneously optimize a very large number of variables
for which derivatives and other discipline-specific expertise are not available.
Furthermore, SAND gains much of its value from residuals that can be computed
more efficiently than can disciplinary analyses. Use of SAND in real-world appli-
cations is often limited by the inability to modify existing disciplinary analysis
code to produce an efficient residual form.

x1

x2

x(1)

Figure 21.15. SAND can explore re-
gions of the design space that are
infeasible and potentially bridge
the gap between feasible subsets.

SAND is applied to the ride-sharing problem in example 21.8.

Applying the simultaneous analysis and design architecture to the ride-
sharing problem requires disciplinary residuals. These can potentially de-
pend on all design and response variables. The architecture requires that
the optimizer optimize all of the design variables and all of the response
variables.

minimize
v,s,r,p,y(v) ,y(s) ,y(a) ,y(r) ,y(d) ,y(p)

f
(

v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)
)

subject to
[

v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)
]

∈ X

rv(v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)) = 0

rs(v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)) = 0

ra(v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)) = 0

rr(v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)) = 0

rd(v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)) = 0

rp(v, s, r, p, y(v), y(s), y(a), y(r), y(d), y(p)) = 0

Example 21.8. The simultaneous
analysis and design architecture
applied to the ride-sharing prob-
lem.

21.9 Summary

• Multidisciplinary design optimization requires reasoning about multiple disci-
plines and achieving agreement between coupled variables.

• Disciplinary analyses can often be ordered to minimize dependency cycles.
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• Multidisciplinary design problems can be structured in different architectures
that take advantage of problem features to improve the optimization process.

• The multidisciplinary design feasible architecture maintains feasibility and
compatibility through the use of slow and potentially nonconvergent multidis-
ciplinary design analyses.

• Sequential optimization allows each discipline to optimize its discipline-specific
variables but does not always yield optimal designs.

• The individual discipline feasible architecture allows parallel execution of
analyses at the expense of adding coupling variables to the global optimizer.

• Collaborative optimization incorporates suboptimizers that can leverage do-
main specialization to optimize some variables locally.

• The simultaneous analysis and design architecture replaces design analyses
with residuals, allowing the optimizer to find compatible solutions but cannot
directly use disciplinary solution techniques.

21.10 Exercises

Exercise 21.1. Provide an example of a practical engineering problem that is
multidisciplinary.

Exercise 21.2. Provide an abstract example of a multidisciplinary problem where
the order of the analyses is important.

Exercise 21.3. What is one advantage of the individual discipline feasible archi-
tecture over the multidisciplinary design feasible and sequential optimization
architectures?

Exercise 21.4. Consider applyingmultidisciplinary design analysis tominimizing
the weight of a wing whose deformation and loading are computed by separate
disciplines. We will use a simplified version of the problem, representing the
wing as a horizontally-mounted pendulum supported by a torsional spring.
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θ

mg

ℓ

kθ

mgℓ cos(θ)

k

The objective is tominimize the spring stiffness, k, such that the pendulum’s dis-
placement does not exceed a target threshold. The pendulum length ℓ, pendulum
point mass m, and gravitational constant g are fixed.

We use two simplified analyses in place of more sophisticated analyses used to
compute deformations and loadings of aircraft wings. Assuming the pendulum
is rigid, the loading moment M is equal to mgℓ cos(θ). The torsional spring resists
deformation such that the pendulum’s angular displacement θ is M/k.

Formulate the spring-pendulum problem under the multidisciplinary design
feasible architecture, and then solve it according to that architecture for:

m = 1 kg, ℓ = 1 m, g = 9.81 m s−2, θmax = 10 rad

Exercise 21.5. Formulate the spring-pendulum problem under the individual
design feasible architecture.

Exercise 21.6. Formulate the spring-pendulum under the collaborative optimiza-
tion architecture. Present the two disciplinary optimization problems and the
system-level optimization problem.





A Julia

Julia is a scientific programming language that is free and open source.1 It is a 1 Julia may be obtained from
http://julialang.org.relatively new language that borrows inspiration from languages like Python,

MATLAB, and R. It was selected for use in this book because it is sufficiently
high level2 so that the algorithms can be compactly expressed and readable while 2 In contrast with languages like

C++, Julia does not require pro-
grammers to worry about memory
management and other lower-level
details.

also being fast. This book is compatible with Julia version 1.0. This appendix
introduces the necessary concepts for understanding the code included in the
text.

julia> using InteractiveUtils
julia> using LinearAlgebraA.1 Types

Julia has a variety of basic types that can represent data such as truth values,
numbers, strings, arrays, tuples, and dictionaries. Users can also define their own
types. This section explains how to use some of the basic types and define new
types.

A.1.1 Booleans
The Boolean type in Julia, written Bool, includes the values true and false. We
can assign these values to variables. Variable names can be any string of characters,
including Unicode, with a few restrictions.
done = false
α = false

The left-hand side of the equal sign is the variable name, and the right hand side
is the value.

We can make assignments in the Julia console. The console will return a re-
sponse to the expression being evaulated.

http://julialang.org
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julia> x = true
true
julia> y = false
false
julia> typeof(x)
Bool

The standard Boolean operators are supported.
julia> !x # not
false
julia> x && y # and
false
julia> x || y # or
true

The # symbol indicates that the rest of the line is a comment and should not be
evaluated.

A.1.2 Numbers
Julia supports integer and floating point numbers as shown here
julia> typeof(42)
Int64
julia> typeof(42.0)
Float64

Here, Int64 denotes a 64-bit integer, and Float64 denotes a 64-bit floating point
value.3 We can also perform the standard mathematical operations: 3 On 32-bit machines, an integer

literal like 42 is interpreted as an
Int32.julia> x = 4

4
julia> y = 2
2
julia> x + y
6
julia> x - y
2
julia> x * y
8
julia> x / y
2.0
julia> x ^ y
16
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julia> x % y # x modulo y
0

Note that the result of x / y is a Float64, even when x and y are integers. We
can also perform these operations at the same time as an assignment. For example,
x += 1 is shorthand for x = x + 1.

We can also make comparisons:
julia> 3 > 4
false
julia> 3 >= 4
false
julia> 3 ≥ 4 # unicode also works
false
julia> 3 < 4
true
julia> 3 <= 4
true
julia> 3 ≤ 4 # unicode also works
true
julia> 3 == 4
false
julia> 3 < 4 < 5
true

A.1.3 Strings
A string is an array of characters. Strings are not used very much in this textbook
except for reporting certain errors. An object of type String can be constructed
using " characters. For example:
julia> x = "optimal"
"optimal"
julia> typeof(x)
String

A.1.4 Vectors
A vector is a one-dimensional array that stores a sequence of values. We can con-
struct a vector using square brackets, separating elements by commas. Semicolons
in these examples suppress the output.
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julia> x = []; # empty vector
julia> x = trues(3); # Boolean vector containing three trues
julia> x = ones(3); # vector of three ones
julia> x = zeros(3); # vector of three zeros
julia> x = rand(3); # vector of three random numbers between 0 and 1
julia> x = [3, 1, 4]; # vector of integers
julia> x = [3.1415, 1.618, 2.7182]; # vector of floats

An array comprehension can be used to create vectors. Below, we use the print
function so that the output is printed horizontally.
julia> print([sin(x) for x = 1:5])
[0.841471, 0.909297, 0.14112, -0.756802, -0.958924]

We can inspect the type of vectors:
julia> typeof([3, 1, 4]) # 1-dimensional array of Int64s
Array{Int64,1}
julia> typeof([3.1415, 1.618, 2.7182]) # 1-dimensional array of Float64s
Array{Float64,1}

We index into vectors using square brackets.
julia> x[1] # first element is indexed by 1
3.1415
julia> x[3] # third element
2.7182
julia> x[end] # use end to reference the end of the array
2.7182
julia> x[end - 1] # this returns the second to last element
1.618

We can pull out a range of elements from an array. Ranges are specified using
a colon notation.
julia> x = [1, 1, 2, 3, 5, 8, 13];
julia> print(x[1:3]) # pull out the first three elements
[1, 1, 2]
julia> print(x[1:2:end]) # pull out every other element
[1, 2, 5, 13]
julia> print(x[end:-1:1]) # pull out all the elements in reverse order
[13, 8, 5, 3, 2, 1, 1]

We can perform a variety of different operations on arrays. The exclamation
mark at the end of function names is often used to indicate that the function
mutates (i.e., changes) the input.
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julia> print([x, x]) # concatenation
Array{Int64,1}[[1, 1, 2, 3, 5, 8, 13], [1, 1, 2, 3, 5, 8, 13]]
julia> length(x)
7
julia> print(push!(x, -1)) # add an element to the end
[1, 1, 2, 3, 5, 8, 13, -1]
julia> pop!(x) # remove an element from the end
-1
julia> print(append!(x, [2, 3])) # append y to the end of x
[1, 1, 2, 3, 5, 8, 13, 2, 3]
julia> print(sort!(x)) # sort the elements in the vector
[1, 1, 2, 2, 3, 3, 5, 8, 13]
julia> x[1] = 2; print(x) # change the first element to 2
[2, 1, 2, 2, 3, 3, 5, 8, 13]
julia> x = [1, 2];
julia> y = [3, 4];
julia> print(x + y) # add vectors
[4, 6]
julia> print(3x - [1, 2]) # multiply by a scalar and subtract
[2, 4]
julia> print(dot(x, y)) # dot product
11
julia> print(x⋅y) # dot product using unicode character
11

It is often useful to apply various functions elementwise to vectors.
julia> print(x .* y) # elementwise multiplication
[3, 8]
julia> print(x .^ 2) # elementwise squaring
[1, 4]
julia> print(sin.(x)) # elementwise application of sin
[0.841471, 0.909297]
julia> print(sqrt.(x)) # elementwise application of sqrt
[1.0, 1.41421]

A.1.5 Matrices
A matrix is a two-dimensional array. Like a vector, it is constructed using square
brackets. We use spaces to delimit elements in the same row and semicolons to
delimit rows. We can also index into the matrix and output submatrices using
ranges.
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julia> X = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
julia> typeof(X) # a 2-dimensional array of Int64s
Array{Int64,2}
julia> X[2] # second element using column-major ordering
4
julia> X[3,2] # element in third row and second column
8
julia> print(X[1,:]) # extract the first row
[1, 2, 3]
julia> print(X[:,2]) # extract the second column
[2, 5, 8, 11]
julia> print(X[:,1:2]) # extract the first two columns
[1 2; 4 5; 7 8; 10 11]
julia> print(X[1:2,1:2]) # extract a 2x2 matrix from the top left of x
[1 2; 4 5]

We can also construct a variety of special matrices and use array comprehen-
sions:
julia> print(Matrix(1.0I, 3, 3)) # 3x3 identity matrix
[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]
julia> print(Matrix(Diagonal([3, 2, 1]))) # 3x3 diagonal matrix with 3, 2, 1 on diagonal
[3 0 0; 0 2 0; 0 0 1]
julia> print(rand(3,2)) # 3x2 random matrix
[0.000281914 0.388884; 0.543776 0.263469; 0.337295 0.0481282]
julia> print(zeros(3,2)) # 3x2 matrix of zeros
[0.0 0.0; 0.0 0.0; 0.0 0.0]
julia> print([sin(x + y) for x = 1:3, y = 1:2]) # array comprehension
[0.909297 0.14112; 0.14112 -0.756802; -0.756802 -0.958924]

Matrix operations include the following:
julia> print(X') # complex conjugate transpose
[1 4 7 10; 2 5 8 11; 3 6 9 12]
julia> print(3X .+ 2) # multiplying by scalar and adding scalar
[5 8 11; 14 17 20; 23 26 29; 32 35 38]
julia> X = [1 3; 3 1]; # create an invertible matrix
julia> print(inv(X)) # inversion
[-0.125 0.375; 0.375 -0.125]
julia> det(X) # determinant
-8.0
julia> print([X X]) # horizontal concatenation
[1 3 1 3; 3 1 3 1]
julia> print([X; X]) # vertical concatenation
[1 3; 3 1; 1 3; 3 1]



a.1. types 417

julia> print(sin.(X)) # elementwise application of sin
[0.841471 0.14112; 0.14112 0.841471]

A.1.6 Tuples
A tuple is an ordered list of values, potentially of different types. They are con-
structed with parentheses. They are similar to arrays, but they cannot be mutated.
julia> x = (1,) # a single element tuple indicated by the trailing comma
(1,)
julia> x = (1, 0, [1, 2], 2.5029, 4.6692) # third element is a vector
(1, 0, [1, 2], 2.5029, 4.6692)
julia> x[2]
0
julia> x[end]
4.6692
julia> x[4:end]
(2.5029, 4.6692)
julia> length(x)
5

A.1.7 Dictionaries
A dictionary is a collection of key-value pairs. Key-value pairs are indicated with
a double arrow operator. We can index into a dictionary using square brackets as
with arrays and tuples.
julia> x = Dict(); # empty dictionary
julia> x[3] = 4 # associate value 4 with key 3
4
julia> x = Dict(3=>4, 5=>1) # create a dictionary with two key-value pairs
Dict{Int64,Int64} with 2 entries:
3 => 4
5 => 1

julia> x[5] # return value associated with key 5
1
julia> haskey(x, 3) # check whether dictionary has key 3
true
julia> haskey(x, 4) # check whether dictionary has key 4
false
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A.1.8 Composite Types
A composite type is a collection of named fields. By default, an instance of a com-
posite type is immutable (i.e., it cannot change). We use the struct keyword and
then give the new type a name and list the names of the fields.
struct A

a
b

end

Adding the keyword mutable makes it so that an instance can change.
mutable struct B

a
b

end

Composite types are constructed using parentheses, between which we pass
in values for the different fields. For example,
x = A(1.414, 1.732)

The double-colon operator can be used to annotate the types for the fields.
struct A

a::Int64
b::Float64

end

This annotation requires that we pass in an Int64 for the first field and a Float64
for the second field. For compactness, this text does not use type annotations,
but it is at the expense of performance. Type annotations allow Julia to improve
runtime performance because the compiler can optimize the underlying code for
specific types.

A.1.9 Abstract Types
So far we have discussed concrete types, which are types that we can construct.
However, concrete types are only part of the type hierarchy. There are also abstract
types, which are supertypes of concrete types and other abstract types.

We can explore the type hierarchy of the Float64 type shown in figure A.1
using the supertype and subtype functions.

Any

Number

Real

AbstractFloat

Float64

Float32

Float16

BigFloat

... ... ...

Figure A.1. The type hierarchy for
the Float64 type.
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julia> supertype(Float64)
AbstractFloat
julia> supertype(AbstractFloat)
Real
julia> supertype(Real)
Number
julia> supertype(Number)
Any
julia> supertype(Any) # Any is at the top of the hierarchy
Any
julia> subtypes(AbstractFloat) # different types of AbstractFloats
4-element Array{Any,1}:
BigFloat
Float16
Float32
Float64
julia> subtypes(Float64) # Float64 does not have any subtypes
0-element Array{Type,1}

We can define our own abstract types.
abstract type C end
abstract type D <: C end # D is an abstract subtype of C
struct E <: D # E is composite type that is a subtype of D

a
end

A.1.10 Parametric Types
Julia supports parametric types, which are types that take parameters. We have
already seen a parametric type with our dictionary example.
julia> x = Dict(3=>4, 5=>1)
Dict{Int64,Int64} with 2 entries:
3 => 4
5 => 1

This constructs a Dict{Int64,Int64}. The parameters to the parametric type are
listed within braces and delimited by commas. For the dictionary type, the first
parameter specifies the key type, and the second parameter specifies the value
type. Julia was able to infer this based on the input, but we could have specified
it explicitly.
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julia> x = Dict{Int64,Int64}(3=>4, 5=>1)
Dict{Int64,Int64} with 2 entries:
3 => 4
5 => 1

It is possible to define our own parametric types, but we do not do that in this
text.

A.2 Functions

A function is an object that maps a tuple of argument values to a return value.
This section discusses how to define and work with functions.

A.2.1 Named Functions
One way to define a named function is to use the function keyword, followed by
the name of the function and a tuple of names of arguments.
function f(x, y)

return x + y
end

We can also define functions compactly using assignment form.
julia> f(x, y) = x + y;
julia> f(3, 0.1415)
3.1415

A.2.2 Anonymous Functions
An anonymous function is not given a name, though it can be assigned to a named
variable. One way to define an anonymous function is to use the arrow operator.
julia> h = x -> x^2 + 1 # assign anonymous function to a variable
#1 (generic function with 1 method)
julia> g(f, a, b) = [f(a), f(b)]; # applies function f to a and b and returns array
julia> g(h, 5, 10)
2-element Array{Int64,1}:
26

101
julia> g(x->sin(x)+1, 10, 20)
2-element Array{Float64,1}:
0.4559788891106302
1.9129452507276277
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A.2.3 Optional Arguments
We can specify optional arguments by setting default values.
julia> f(x = 10) = x^2;
julia> f()
100
julia> f(3)
9
julia> f(x, y, z = 1) = x*y + z;
julia> f(1, 2, 3)
5
julia> f(1, 2)
3

A.2.4 Keyword Arguments
Functions with keyword arguments are defined using a semicolon.
julia> f(; x = 0) = x + 1;
julia> f()
1
julia> f(x = 10)
11
julia> f(x, y = 10; z = 2) = (x + y)*z;
julia> f(1)
22
julia> f(2, z = 3)
36
julia> f(2, 3)
10
julia> f(2, 3, z = 1)
5

A.2.5 Function Overloading
The types of the arguments passed to a function can be specified using the double
colon operator. If multiple functions of the same name are provided, Julia will
execute the appropriate function.
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julia> f(x::Int64) = x + 10;
julia> f(x::Float64) = x + 3.1415;
julia> f(1)
11
julia> f(1.0)
4.141500000000001
julia> f(1.3)
4.4415000000000004

The implementation of the most specific function will be used.
julia> f(x) = 5;
julia> f(x::Float64) = 3.1415;
julia> f([3, 2, 1])
5
julia> f(0.00787499699)
3.1415

A.3 Control Flow

We can control the flow of our programs using conditional evaluation and loops.
This section provides some of the syntax used in the book.

A.3.1 Conditional Evaluation
Conditional evaluation will check the value of a Boolean expression and then
evaluate the appropriate block of code. One of the most common ways to do this
is with an if statement.
if x < y

# run this if x < y
elseif x > y

# run this if x > y
else

# run this if x == y
end

We can also use the ternary operator with its question mark and colon syntax.
It checks the Boolean expression before the question mark. If the expression
evaluates to true, then it returns what comes before the colon; otherwise it returns
what comes after the colon.
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julia> f(x) = x > 0 ? x : 0;
julia> f(-10)
0
julia> f(10)
10

A.3.2 Loops
A loop allows for repeated evaluation of expressions. One type of loop is the while
loop. It repeatedly evaluates a block of expressions until the specified condition
after the while keyword is met. The following example will sum the values in
array x

x = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
s = 0
while x != []

s += pop!(x)
end

Another type of loop is the for loop. It uses the for keyword. The following
example will also sum over the values in the array x but will not modify x.
x = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
s = 0
for i = 1:length(x)

s += x[i]
end

The = can be substituted with in or ∈. The following code block is equivalent.
x = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
s = 0
for y in x

s += y
end

A.4 Packages

A package is a collection of Julia code and possibly other external libraries that
can be imported to provide additional functionality. Julia has a built-in package
manager. A list of registered packages can be found at https://pkg.julialang
.org. To add a registered package like Distributions.jl, we can run:

https://pkg.julialang.org
https://pkg.julialang.org
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Pkg.add("Distributions")

To update packages, we use:
Pkg.update()

To use a package, we use the keyword using:
using Distributions

Several code blocks in this text specify a package import with using. Some
code blocks make use of functions that are not explicitly imported. For instance,
the var function is provided by Statistics.jl, and the golden ratio ϕ is defined
in Base.MathConstants.jl. Other excluded packages are InteractiveUtils.jl,
Iterators.jl, LinearAlgebra.jl, QuadGK.jl, Random.jl, and StatsBase.jl.



B Test Functions

Researchers in optimization use several test functions to evaluate optimization
algorithms. This section covers several test functions used throughout this book.

B.1 Ackley’s Function

Ackley’s function (figure B.1) is used to test a method’s susceptibility to getting
stuck in local minima. It is comprised of two primary components—a sinusoidal
component that produces a multitude of local minima and an exponential bell
curve centered at the origin, which establishes the function’s global minimum.
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Figure B.1. The two-dimensional
version of Ackley’s function. The
global minimum is at the origin.



426 appendix b. test functions

Ackley’s function is defined for any number of dimensions d:

f (x) = −a exp



−b

√
√
√
√1

d

d

∑
i=1

x2
i



− exp

(

1

d

d

∑
i=1

cos(cxi)

)

+ a + exp(1) (B.1)

with a global minimum at the origin with an optimal value of zero. Typically,
a = 20, b = 0.2, and c = 2π. Ackley’s function is implemented in algorithm B.1.

function ackley(x, a=20, b=0.2, c=2π)
d = length(x)
return -a*exp(-b*sqrt(sum(x.^2)/d)) -

exp(sum(cos.(c*xi) for xi in x)/d) + a +
end

Algorithm B.1. Ackley’s function
with d-dimensional input vector x
and three optional parameters.

B.2 Booth’s Function

Booth’s function (figure B.2) is a two-dimensional quadratic function.
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Figure B.2. Booth’s function with
a global minimum at [1, 3].
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Its equation is given by

f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 (B.2)

with a global minimum at [1, 3] with an optimal value of zero. It is implemented
in algorithm B.2.

booth(x) = (x[1]+2x[2]-7)^2 + (2x[1]+x[2]-5)^2 Algorithm B.2. Booth’s function
with two-dimensional input vector
x.

B.3 Branin Function

The Branin function (figure B.3) is a two-dimensional function,

f (x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cos(x1) + s (B.3)

with recommended values a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, and
t = 1/(8π).
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Figure B.3. The Branin function,
with four global minima.
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It has no local minima aside from global minima with x1 = π + 2πm for
integral m. Four of these minima are:

{[

−π

12.275

]

,

[

π

2.275

]

,

[

3π

2.475

]

,

[

5π

12.875

]}

(B.4)

with f (x∗) ≈ 0.397887. It is implemented in algorithm B.3.

function branin(x; a=1, b=5.1/(4π^2), c=5/π, r=6, s=10, t=1/(8π))
return a*(x[2]-b*x[1]^2+c*x[1]-r)^2 + s*(1-t)*cos(x[1]) + s

end

Algorithm B.3. The Branin func-
tion with two-dimensional input
vector x and six optional parame-
ters.

B.4 Flower Function

The flower function (figure B.4) is a two-dimensional test function whose contour
function has flower-like petals originating from the origin.
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Figure B.4. The flower function.

The equation is

f (x) = a‖x‖+ b sin(c tan−1(x2, x1)) (B.5)
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with its parameters typically set to a = 1, b = 1, and c = 4.
The flower function is minimized near the origin but does not have a global

minimumdue to atan being undefined at [0, 0]. It is implemented in algorithm B.4.

function flower(x; a=1, b=1, c=4)
return a*norm(x) + b*sin(c*atan(x[2], x[1]))

end

AlgorithmB.4. The flower function
with two-dimensional input vector
x and three optional parameters.

B.5 Michalewicz Function

The Michalewicz function (figure B.5) is a d-dimensional optimization function
with several steep valleys.
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Figure B.5. The Michalewicz func-
tion.

Its equation is

f (x) = −
d

∑
i=1

sin(xi) sin2m

(

ix2
i

π

)

(B.6)
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where the parameter m, typically 10, controls the steepness. The global minimum
depends on the number of dimensions. In two dimensions the minimum is at ap-
proximately [2.20, 1.57]with f (x∗) = −1.8011. It is implemented in algorithm B.5.

function michalewicz(x; m=10)
return -sum(sin(v)*sin(i*v^2/π)^(2m) for

(i,v) in enumerate(x))
end

Algorithm B.5. The Michalewicz
function with input vector x and
optional steepness parameter m.

B.6 Rosenbrock’s Banana Function

The Rosenbrock function (figure B.6), also called Rosenbrock’s valley or Rosen-
brock’s banana function, is a well-known unconstrained test function developed
by Rosenbrock in 1960.1 It has a globalminimum inside a long, curved valley.Most 1 H.H. Rosenbrock, ‘‘An Automatic

Method for Finding the Greatest
or Least Value of a Function,’’
The Computer Journal, vol. 3, no. 3,
pp. 175–184, 1960.

optimization algorithms have no problem finding the valley but have difficulties
traversing along the valley to the global minimum.
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Figure B.6. The Rosenbrock func-
tion with a = 1 and b = 5. The
global minimum is at [1, 1].
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The Rosenbrock function is
f (x) = (a− x1)

2 + b(x2 − x2
1)

2 (B.7)
with a global minimum at [a, a2] at which f (x∗) = 0. This text uses a = 1 and
b = 5. The Rosenbrock function is implemented in algorithm B.6.

rosenbrock(x; a=1, b=5) = (a-x[1])^2 + b*(x[2] - x[1]^2)^2 Algorithm B.6. The Rosenbrock
function with two-dimensional in-
put vector x and two optional pa-
rameters.

B.7 Wheeler’s Ridge

Wheeler’s ridge (figure B.7) is a two-dimensional function with a single global
minimum in a deep curved peak. The function has two ridges, one along the
positive and one along the negative first coordinate axis. A gradient descent
method will diverge along the negative axis ridge. The function is very flat away
from the optimum and the ridge.
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Figure B.7. Wheeler’s ridge show-
ing the two ridges and the peak
containing the global minimum.
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Figure B.8. A contour plot of the
minimal region of Wheeler’s ridge.

The function is given by
f (x) = − exp(−(x1x2 − a)2 − (x2 − a)2) (B.8)

with a typically equal to 1.5, for which the global optimum of −1 is at [1, 3/2].

wheeler(x, a=1.5) = -exp(-(x[1]*x[2] - a)^2 -(x[2]-a)^2) Algorithm B.7. Wheeler’s ridge,
which takes in a two-dimensional
design point x and an optional
scalar parameter a.Wheeler’s ridge has a smooth contour plot (figure B.8) when evaluated over

x1 ∈ [0, 3] and x2 ∈ [0, 3]. It is implemented in algorithm B.7.
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B.8 Circle Function

The circle function (algorithm B.8) is a simple multiobjective test function given
by

f(x) =

[

1− r cos(θ)

1− r sin(θ)

]

(B.9)

where θ = x1 and r is obtained by passing x2 through

r =
1

2
+

1

2

(

2x2

1 + x2
2

)

(B.10)

The Pareto frontier has r = 1 and mod (θ, 2π) ∈ [0, π/2] or r = −1 and
mod (θ, 2π) ∈ [π, 3π/2].

function circle(x)
θ = x[1]
r = 0.5 + 0.5*(2x[2]/(1+x[2]^2))
y1 = 1 - r*cos(θ)
y2 = 1 - r*sin(θ)
return [y1, y2]

end

Algorithm B.8. The circle function,
which takes in a two-dimensional
design point x and produces a two-
dimensional objective value.



C Mathematical Concepts

This appendix covers mathematical concepts used in the derivation and analysis
of optimization methods. These concepts are used throughout this book.

C.1 Asymptotic Notation

Asymptotic notation is often used to characterize the growth of a function. This
notation is sometimes called big-Oh notation, since the letter O is used because
the growth rate of a function is often called its order. This notation can be used
to describe the error associated with a numerical method or the time or space
complexity of an algorithm. This notation provides an upper bound on a function
as its argument approaches a certain value.

Mathematically, if f (x) = O(g(x)) as x → a then the absolute value of f (x) is
bounded by the absolute value of g(x) times some positive and finite c for values
of x sufficiently close to a:

| f (x)| ≤ c|g(x)| for x → a (C.1)

Writing f (x) = O(g(x)) is a common abuse of the equal sign. For example,
x2 = O(x2) and 2x2 = O(x2), but, of course, x2 6= 2x2. In some mathematical
texts, O(g(x)) represents the set of all functions that do not grow faster than g(x).
One might write, for example, 5x2 ∈ O(x2). An example of asymptotic notation
is given in example C.1.

If f (x) is a linear combination1 of terms, then O( f ) corresponds to the order of

1 A linear combination is a
weighted sum of terms. If
the terms are in a vector x,
then the linear combination is
w1x1 + w2x2 + · · · = w⊤x.the fastest growing term. Example C.2 compares the orders of several terms.
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Consider f (x) = 106ex as x → ∞. Here, f is a product of constant 106 and
ex. The constant can simply be incorporated into the bounding constant c:

| f (x)| ≤ c|g(x)|
106|ex| ≤ c|g(x)|
|ex| ≤ c|g(x)|

Thus, f = O(ex) as x → ∞.

Example C.1. Asymptotic notation
for a constant times a function.

Consider f (x) = cos(x) + x + 10x3/2 + 3x2. Here, f is a linear combination
of terms. The terms cos(x), x, x3/2, x2 are arranged in order of increasing
value as x approaches infinity. We plot f (x) along with c|g(x)|, where c has
been chosen for each term such that c|g(x = 2)| exceeds f (x = 2).
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There is no constant c such that f (x) is always less than c|x3/2| for suffi-
ciently large values of x. The same is true for cos(x) and x.

We find that f (x) = O(x3), and in general f (x) = O(xm) for m ≥ 2, along
with other function classes like f (x) = ex. We typically discuss the order that
provides the tightest upper bound. Thus, f = O(x2) as x → ∞.

Example C.2. An illustration of
finding the order of a linear combi-
nation of terms.
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C.2 Taylor Expansion

The Taylor expansion, also called the Taylor series, of a function is critical to under-
standing many of the optimization methods covered in this book, so we derive it
here.

From the first fundamental theorem of calculus,2 we know that 2 The first fundamental theorem of
calculus relates a function to the
integral of its derivative:

f (b)− f (a) =
∫ b

a
f ′(x) dx

f (x + h) = f (x) +
∫ h

0
f ′(x + a) da (C.2)

Nesting this definition produces the Taylor expansion of f about x:

f (x + h) = f (x) +
∫ h

0

(

f ′(x) +
∫ a

0
f ′′(x + b) db

)

da (C.3)

= f (x) + f ′(x)h +
∫ h

0

∫ a

0
f ′′(x + b) db da (C.4)

= f (x) + f ′(x)h +
∫ h

0

∫ a

0

(

f ′′(x) +
∫ b

0
f ′′′(x + c) dc

)

db da (C.5)

= f (x) + f ′(x)h +
f ′′(x)

2!
h2 +

∫ h

0

∫ a

0

∫ b

0
f ′′′(x + c) dc db da (C.6)

... (C.7)

= f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + . . . (C.8)

=
∞

∑
n=0

f (n)(x)

n!
hn (C.9)

In the formulation above, x is typically fixed and the function is evaluated in
terms of h. It is often more convenient to write the Taylor expansion of f (x) about
a point a such that it remains a function of x:

f (x) =
∞

∑
n=0

f (n)(a)

n!
(x− a)n (C.10)

The Taylor expansion represents a function as an infinite sum of polynomial
terms based on repeated derivatives at a single point. Any analytic function can
be represented by its Taylor expansion within a local neighborhood.

A function can be locally approximated by using the first few terms of the Taylor
expansion. Figure C.1 shows increasingly better approximations for cos(x) about
x = 1. Including more terms increases the accuracy of the local approximation,
but error still accumulates as one moves away from the expansion point.
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Figure C.1. Successive approxima-
tions of cos(x) about 1 based on
the first n terms of the Taylor ex-
pansion.

A linear Taylor approximation uses the first two terms of the Taylor expansion:

f (x) ≈ f (a) + f ′(a)(x− a) (C.11)

A quadratic Taylor approximation uses the first three terms:

f (x) ≈ f (a) + f ′(a)(x− a) +
1

2
f ”(a)(x− a)2 (C.12)

and so on.
In multiple dimensions, the Taylor expansion about a generalizes to

f (x) = f (a) +∇ f (a)⊤(x− a) +
1

2
(x− a)⊤∇2 f (a)(x− a) + . . . (C.13)

The first two terms form the tangent plane at a. The third term incorporates
local curvature. This text will use only the first three terms shown here.

C.3 Convexity

A convex combination of two vectors x and y is the result of

αx + (1− α)y (C.14)
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for some α ∈ [0, 1]. Convex combinations can be made from m vectors,
w1v(1) + w2v(2) + · · ·+ wmv(m) (C.15)

with nonnegative weights w that sum to one.
A convex set is a set for which a line drawn between any two points in the set is

entirely within the set. Mathematically, a set S is convex if we have
αx + (1− α)y ∈ S . (C.16)

for all x, y in S and for all α in [0, 1]. A convex and a nonconvex set are shown in
figure C.2.

A convex set Not a convex set

Figure C.2. Convex and non-
convex sets.

A convex function is a bowl-shaped function whose domain is a convex set. By
bowl-shaped, we mean it is a function such that any line drawn between two
points in its domain does not lie below the function. A function f is convex over
a convex set S if, for all x, y in S and for all α in [0, 1],

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y) (C.17)
Convex and concave regions of a function are shown in figure C.3.

Convex
Concave

x

f(
x
)

Figure C.3. Convex and nonconvex
portions of a function.

A function f is strictly convex over a convex set S if, for all x, y in S and α in
(0, 1),

f (αx + (1− α)y) < α f (x) + (1− α) f (y) (C.18)
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Strictly convex functions have at most one minimum, whereas a convex function
can have flat regions.3 Examples of strict and nonstrict convexity are shown in

3 Optimization of convex functions
is the subject of the textbook by S.
Boyd and L. Vandenberghe, Con-
vex Optimization. Cambridge Uni-
versity Press, 2004.

figure C.4.

x∗
ex

Strictly convex function with
one global minimum.

Convex function without a
unique global minimum.

Strictly convex function
without a global minimum.

Figure C.4. Not all convex func-
tions have single global minima.A function f is concave if − f is convex. Furthermore, f is strictly concave if − f

is strictly convex.
Not all convex functions are unimodal and not all unimodal functions are

convex, as shown in figure C.5.

ex

Unimodal and convex Unimodal but nonconvex Convex but nonunimodal
Figure C.5. Convexity and uni-
modality are not the same thing.
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C.4 Norms

A norm is a function that assigns a length to a vector. To compute the distance
between two vectors, we evaluate the norm of the difference between those two
vectors. For example, the distance between points a and b using the Euclidean
norm is

‖a− b‖2 =
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2 (C.19)

A function f is a norm if4 4 Some properties that follow from
these axioms include:

f (−x) = f (x)

f (x) ≥ 0

1. f (x) = 0 if and only if a is the zero vector.

2. f (ax) = |a| f (x), such that lengths scale.

3. f (a + b) ≤ f (a) + f (b), also known as the triangle inequality.

The Lp norms are a commonly used set of norms parameterized by a scalar
p ≥ 1. The Euclidean norm in equation (C.19) is the L2 norm. Several Lp norms
are shown in table C.1.

The Lp norms are defined according to:

‖x‖p = lim
ρ→p

(|x1|ρ + |x2|ρ + · · ·+ |xn|ρ)
1
ρ (C.20)

where the limit is necessary for defining the infinity norm, L∞.5 5 The L∞ norm is also referred to
as the max norm, Chebyschev dis-
tance, or chessboard distance. The
latter name comes from the min-
imum number of moves a chess
king needs to move between two
chess squares.

C.5 Matrix Calculus

This section derives two common gradients: ∇xb⊤x and ∇xx⊤Ax.
To obtain ∇xb⊤x, we first expand the dot product:

b⊤x = [b1x1 + b2x2 + · · ·+ bnxn] (C.21)

The partial derivative with respect to a single coordinate is:

∂

∂xi
b⊤x = bi (C.22)

Thus, the gradient is:
∇xb⊤x = ∇xx⊤b = b (C.23)
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L1: ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|

L2: ‖x‖2 =
√

x2
1 + x2

2 + · · ·+ x2
n

L∞: ‖x‖∞ = max(|x1|, |x2|, · · · , |xn|)

Table C.1. Common Lp norms.
The illustrations show the shape of
the norm contours in two dimen-
sions. All points on the contour are
equidistant from the origin under
that norm.
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To obtain ∇xx⊤Ax for a square matrix A, we first expand x⊤Ax:

x⊤Ax =








x1

x2

· · ·
xn








⊤ 







a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann
















x1

x2

· · ·
xn








(C.24)

=








x1

x2

· · ·
xn








⊤ 







x1a11 + x2a12 + · · ·+ xna1n

x1a21 + x2a22 + · · ·+ xna2n
...

x1an1 + x2an2 + · · ·+ xnann









(C.25)

=

x2
1a11 + x1x2a12 + · · ·+ x1xna1n+

x1x2a21 + x2
2a22 + · · ·+ x2xna2n+

...
x1xnan1 + x2xnan2 + · · ·+ x2

nann

(C.26)

The partial derivative with respect to the ith component is

∂

∂xi
x⊤Ax =

n

∑
j=1

xj

(
aij + aji

) (C.27)

The gradient is thus:

∇xx⊤Ax =









∑
n
j=1 xj

(
a1j + aj1

)

∑
n
j=1 xj

(
a2j + aj2

)

...
∑

n
j=1 xj

(
anj + ajn

)









(C.28)

=









a11 + a11 a21 + a12 · · · an1 + a1n

a12 + a21 a22 + a22 · · · an2 + a2n
... ... . . . ...

a1n + an1 a2n + an2 · · · ann + ann

















x1

x2
...

xn









(C.29)

=
(

A + A⊤
)

x (C.30)



442 appendix c. mathematical concepts

C.6 Positive Definiteness

The notion of a matrix being positive definite or positive semidefinite often arises
in linear algebra and optimization for a variety of reasons. For example, if the
matrix A is positive definite in the function f (x) = x⊤Ax, then f has a unique
global minimum.

Recall that the quadratic approximation of a twice-differentiable function f at
x0 is

f (x) ≈ f (x0) +∇ f (x0)
⊤(x− x0) +

1

2
(x− x0)

⊤H0(x− x0) (C.31)

where H0 is the Hessian of f evaluated at x0. Knowing that (x− x0)
⊤H0(x− x0)

has a unique global minimum is sufficient to determine whether the overall
quadratic approximation has a unique global minimum.6 . 6 The component f (x0) merely

shifts the function vertically. The
component ∇ f (x0)

⊤(x − x0) is a
linear term which is dominated by
the quadratic term.

A symmetric matrix A is positive definite if x⊤Ax is positive for all points other
than the origin: x⊤Ax > 0 for all x 6= 0.

A symmetric matrix A is positive semidefinite if x⊤Ax is always non-negative:
x⊤Ax ≥ 0 for all x.

C.7 Gaussian Distribution

The probability density function for a univariate Gaussian,7 also called the normal 7 The multivariate Gaussian is dis-
cussed in chapter 8 and chapter 15.
The univariate Gaussian is used
throughout.

distribution, is:
N (x | µ, ν) =

1√
2πν

e−
(x−µ)2

2ν (C.32)

where µ is themean and ν is the variance.8 This distribution is plotted in figure C.6. 8 The variance is the standard devi-
ation squared.The cumulative distribution function of a distribution maps x to the probability

that drawing a value from that distribution will produce a value less than or equal
to x. For a univariate Gaussian, the cumulative distribution function is given by

Φ(x) ≡ 1

2
+

1

2
erf
(

x− µ

σ
√

2

)

(C.33)

where erf is the error function:

erf(x) ≡ 2√
π

∫ x

0
e−τ2

dτ (C.34) µ− σ µ µ + σ

x

p
(x
|µ

,σ
)

Figure C.6. A univariate Gaussian
distribution, N (µ, ν).
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C.8 Gaussian Quadrature

Gaussian quadrature is a technique for approximating integrals using a weighted
sum of function evaluations.9 The general form of the approximation is 9 For a detailed overview of Gaus-

sian quadrature, see J. Stoer and R.
Bulirsch, Introduction to Numerical
Analysis, 3rd ed. Springer, 2002.

∫ b

a
p(x) f (x) dx ≈

m

∑
i=1

wi f (xi) (C.35)

where p(x) is a known nonnegative weight function10 over the finite or infinite 10 The weight function is often
a probability density function in
practice.interval [a, b].

An m-point quadrature rule is a unique choice of points xi ∈ (a, b) and weights
wi > 0 for i ∈ {1, . . . , m} that define a Gaussian quadrature approximation such
that any polynomial of degree 2m− 1 or less is integrated exactly over [a, b] with
the given weight function.

Given a domain and a weight function, we can compute a class of orthogonal
polynomials. We will use bi(x) to denote an orthogonal polynomial11 of degree i. 11 Orthogonal polynomials are cov-

ered in chapter 18.Any polynomial of degree m can be represented as a linear combination of the
orthogonal polynomials up to degree m. We form a quadrature rule by selecting m

points xi to be the zeros of the orthogonal polynomial pm and obtain the weights
by solving the system of equations:

m

∑
i=1

bk(xi)wi =







∫ b
a p(x)b0(x)2 dx for k = 0

0 for k = 1, . . . , m− 1
(C.36)

Gauss solved equation (C.36) for the interval [−1, 1] and theweighting function
p(x) = 1. The orthogonal polynomials for this case are the Legendre polynomials.
Algorithm C.1 implements Gaussian quadrature for Legendre polynomials and
example C.3 works out a quadrature rule for integration over [−1, 1].

We can transform any integral over the bounded interval [a, b] to an integral
over [−1, 1] using the transformation

∫ b

a
f (x) dx =

b− a

2

∫ 1

−1
f

(
b− a

2
x +

a + b

2

)

dx (C.37)

Quadrature rules can thus be precalculated for the Legendre polynomials and
then applied to integration over any finite interval.12 Example C.4 applies such

12 Similar techniques can be ap-
plied to integration over infinite in-
tervals, such as [0, ∞) using the La-
guerre polynomials and (−∞, ∞)
using the Hermite polynomials.

a transformation and algorithm C.2 implements integral transformations in a
Gaussian quadrature method for finite domains.
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Consider the Legendre polynomials for integration over [−1, 1] with the
weight function p(x) = 1. Suppose our function of interest is well approxi-
mated by a fifth degree polynomial. We construct a 3-point quadrature rule,
which produces exact results for polynomials up to degree 5.

The Legendre polynomial of degree 3 is Le3(x) = 5
2 x3 − 3

2 x, which has
roots at x1 = −

√
3/5, x2 = 0, and x3 =

√
3/5. The Legendre polynomials

of lesser degree are Le0(x) = 1, Le1(x) = x, and Le2(x) = 3
2 x2 − 1

2 . The
weights are obtained by solving the system of equations:






Le0(−
√

3/5) Le0(0) Le0(
√

3/5)

Le1(−
√

3/5) Le1(0) Le1(
√

3/5)

Le2(−
√

3/5) Le2(0) Le2(
√

3/5)











w1

w2

w3




 =






∫ 1
−1 Le0(x)2 dx

0

0











1 1 1

−
√

3/5 0
√

3/5

4/10 −1/2 4/10











w1

w2

w3




 =






2

0

0






which yields w1 = w3 = 5/9 and w2 = 8/9.
Consider integrating the 5th degree polynomial f (x) = x5 − 2x4 + 3x3 +

5x2 − x + 4. The exact value is
∫ 1
−1 p(x) f (x) dx = 158/15 ≈ 10.533. The

quadrature rule produces the same value:

3

∑
i=1

wi f (xi) =
5

9
f

(

−
√

3

5

)

+
8

9
f (0) +

5

9
f

(√

3

5

)

≈ 10.533.

Example C.3. Obtaining a 3-term
quadrature rule for exactly inte-
grating polynomials up to degree
5.
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Consider integrating f (x) = x5 − 2x4 + 3x3 + 5x2 − x + 4 over [−3, 5]. We
can transform this into an integration over [−1, 1] using equation (C.37):

∫ 5

−3
f (x) dx =

5 + 3

2

∫ 1

−1
f

(
5 + 3

2
x +

5− 3

2

)

dx = 4
∫ 1

−1
f (4x + 1) dx

We use the 3-term quadrature rule obtained in example C.3 to integrate
g(x) = 4 f (4x + 1) = 4096x5 + 3072x4 + 1280y3 + 768y2 + 240y + 40 over
[−1, 1]:

∫ 1

−1
p(x)g(x) dx =

5

9
g
(

−
√

3/5
)

+
8

9
g(0) +

5

9
g
(√

3/5
)

= 1820.8

Example C.4. Integrals over finite
regions can be transformed into
integrals over [−1, 1] and solved
with quadrature rules for Legen-
dre polynomials.

struct Quadrule
ws
xs

end
function quadrule_legendre(m)

bs = [legendre(i) for i in 1 : m+1]
xs = roots(bs[end])
A = [bs[k](xs[i]) for k in 1 : m, i in 1 : m]
b = zeros(m)
b[1] = 2
ws = A\b
return Quadrule(ws, xs)

end

Algorithm C.1. A method for con-
structing m-point Legendre quadra-
ture rules over [−1, 1]. The result-
ing type contains both the nodes
xs and the weights ws.

quadint(f, quadrule) =
sum(w*f(x) for (w,x) in zip(quadrule.ws, quadrule.xs))

function quadint(f, quadrule, a, b)
α = (b-a)/2
β = (a+b)/2
g = x -> α*f(α*x+β)
return quadint(g, quadrule)

end

Algorithm C.2. The function
quadint for integrating a univari-
ate function f with a given quadra-
ture rule quadrule over the finite
domain [a, b].
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Exercise 1.1: f (x) = x3/3− x at x = 1.
Exercise 1.2: It does not have a minimum, that is, the function is said to be un-
bounded below.
Exercise 1.3: No. Consider minimizing f (x) = x, subject to x ≥ 1.
Exercise 1.4: The function f can be broken into two separate functions that depend
only on their specific coordinate:

f (x, y) = g(x) + h(y)

where g(x) = x2 and h(y) = y. Both g and h strictly increase for x, y ≥ 1. While h

is minimized for y = 1, we can merely approach x → 1 due to the strict inequality
x > y. Thus, f has no minima.
Exercise 1.5: An inflection point is a point on a curve where the sign of the
curvature changes. A necessary condition for x to be an inflection point is that
the second derivative is zero. The second derivative is f ′′(x) = 6x, which is only
zero at x = 0.

A sufficient condition for x to be an inflection point is that the second derivative
changes sign around x. That is, f ′′(x + ǫ) and f ′′(x− ǫ) for ǫ≪ 1 have opposite
signs. This holds for x = 0, so it is an inflection point.

There is thus only one inflection point on x3 − 10.
Exercise 2.1: An entry of the Hessian can be computed using the forward differ-
ence method:

Hij =
∂2 f (x)

∂xi∂xj
≈ ∇ f (x + hej)i −∇ f (x)i

h

where ei is the ith basis vector with ei = 1 and all other entries are zero.
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We can thus approximate the jth column of the Hessian using:

H·j ≈
∇ f (x + hej)−∇ f (x)

h

This procedure can be repeated for each column of the Hessian.
Exercise 2.2: It requires two evaluations of the objective function.
Exercise 2.3: f ′(x) = 1

x + ex − 1
x2 . When x is close to zero, we find that x < 1.

Hence 1
x > 1, and finally 1

x2 >
1
x > 0, so − 1

x2 dominates.
Exercise 2.4: From the complex step method, we have f ′(x) ≈ Im(2 + 4ih)/h =

4h/h = 4.
Exercise 2.5: See the picture below:

c3sinc2+c1(·)2y

x

sin 2

2 cos 2

2

2

1

2

1

0

1

1

Exercise 2.6: The second-order derivative can be approximated using the central
difference on the first-order derivative:

f ′′(x) ≈ f ′(x + h/2)− f ′(x− h/2)

h

for small values of h.
Substituting in the forward and backwards different estimates of f ′(x + h/2)

and f ′(x− h/2) yields:

f ′′(x) ≈
f (x+h/2+h/2)− f (x+h/2−h/2)

h − f (x−h/2+h/2)− f (x−h/2−h/2)
h

h

=
f (x + h)− f (x)

h2
− f (x)− f (x− h)

h2

=
f (x + h)− 2 f (x) + f (x− h)

h2

Exercise 3.1: Fibonacci search is preferred when derivatives are not available.
Exercise 3.2: The Shubert-Piyavskii method needs the Lipschitz constant, which
may not be known.
Exercise 3.3: f (x) = x2. Since the function is quadratic, after three evaluations,
the quadratic model will represent this function exactly.
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Exercise 3.4: We can use the bisection method to find the roots of f ′(x) = x− 1.
After the first update, we have [0, 500]. Then, [0, 250]. Finally, [0, 125].
Exercise 3.5: No, the Lipschitz constant must bound the derivative everywhere
on the interval, and f ′(1) = 2(1 + 2) = 6.
Exercise 3.6: No. The best you can do is use Fibonacci Search and shrink the
uncertainty by a factor of 3; that is, to (32− 1)/3 = 10 1

3 .
Exercise 4.1: Consider running a descent method on f (x) = 1/x for x > 0.
The minimum does not exist and the descent method will forever proceed in
the positive x direction with ever-increasing step sizes. Thus, only relying on
a step-size termination condition would cause the method to run forever. Also
terminating based on gradient magnitude would cause it to terminate.

A descent method applied to f (x) = −x will also forever proceed in the
positive x direction. The function is unbounded below, so neither a step-size
termination condition nor a gradient magnitude termination condition would
trigger. It is common to include an additional termination condition to limit the
number of iterations.
Exercise 4.2: Applying the first Wolfe condition to our objective function yields
6+ (−1+ α)2 ≤ 7− 2α · 10−4, which can be simplified to α2− 2α + 2 · 10−4α ≤ 0.
This equation can be solved to obtain α ≤ 2(1− 10−4). Thus, the maximum step
length is α = 1.9998.
Exercise 5.1: ∇ f (x) = 2Ax + b.
Exercise 5.2: The derivative is f ′(x) = 4x3. Starting from x(1) = 1:

f ′(1) = 4 → x(2) = 1− 4 = −3 (D.1)
f ′(−3) = 4 ∗ (−27) = 108 → x(3) = −3 + 108 = 105 (D.2)

Exercise 5.3: We have f ′(x) = ex − e−x ≈ ex for large x. Thus f ′(x(1)) ≈ e10 and
x(2) ≈ −e10. If we apply an exact line search, x(2) = 0. Thus, without a line search
we are not guaranteed to reduce the value of the objective function.
Exercise 5.4: The Hessian is 2H, and

∇q(d) = d⊤
(

H + H⊤
)

+ b = d⊤(2H) + b.
The gradient is b when d = 0. The conjugate gradient method may diverge
because H is not guaranteed to be positive definite.
Exercise 5.5: Nesterov momentum looks at the point where you will be after the
update to compute the update itself.
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Exercise 5.6: The conjugate gradient method implicitly reuses previous informa-
tion about the function and thus may enjoy better convergence in practice.
Exercise 5.7: The conjugate gradient method initially follows the steepest descent
direction. The gradient is

∇ f (x, y) = [2x + y, 2y + x] (D.3)
which for (x, y) = (1, 1) is [1/

√
2, 1/
√

2]. The direction of steepest descent is
opposite the gradient, d(1) = [−1/

√
2,−1/

√
2].

The Hessian is [

2 1

1 2

]

(D.4)

Since the function is quadratic and the Hessian is positive definite, the conjugate
gradient method converges in at most two steps. Thus, the resulting point after
two steps is the optimum, (x, y) = (0, 0), where the gradient is zero.
Exercise 5.8: No. If exact minimization is performed, then the descent directions
between steps are orthogonal, but [1, 2, 3]⊤[0, 0,−3] 6= 0.
Exercise 6.1: Second-order information can guarantee that one is at a local mini-
mum, whereas a gradient of zero is necessary but insufficient to guarantee local
optimality.
Exercise 6.2: We would prefer Newton’s method if we start sufficiently close to
the root and can compute derivatives analytically. Newton’s method enjoys a
better rate of convergence.
Exercise 6.3: f ′(x) = 2x, f ′′(x) = 2. Thus, x(2) = x(1) − 2x(1)/2 = 0; that is, you
converge in one step from any starting point.
Exercise 6.4: Since ∇ f (x) = Hx, ∇2 f (x) = H, and H is nonsingular, it follows
that x(2) = x(1) −H−1Hx(1) = 0. That is, Newton’s method converges in one step.

Gradient descent diverges:
x(2) = [1, 1]− [1, 1000] = [0,−999] (D.5)
x(3) = [0,−999]− [0,−1000 · 999] = [0, 998001] (D.6)

Conjugate gradient descent uses the same initial search direction as gradient de-
scent and converges to the minimum in the second step because the optimization
objective is quadratic.
Exercise 6.5: The left plot shows convergence for Newton’s method approaching
floating-point resolution within nine iterations. The secant method is slower to
converge because it can merely approximate the derivative.
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The right plot shows the projection of the exact and approximate tangent lines
with respect to f ′ for each method. The secant method’s tangent lines have a
higher slope, and thus intersect the x-axis prematurely.

2 4 6 8 10
10−37

10−23
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105

iteration

f

−3 −2 −1 0

−150

−100

−50

0

x

f′

Newton
secant

Exercise 6.6: Consider the sequence x(k+1) = x(k)/2 starting from x(1) = −1 on
the function f (x) = x2 − x. Clearly the sequence converges to x = 0, the values
for f (x) are decreasing, and yet the sequence does not converge to a minimizer.
Exercise 6.7: It does not need computation or knowledge of the entries of the
Hessian, and hence does not require solving a linear system at each iteration.
Exercise 6.8: The BFGS update does not exist when δ⊤γ ≈ 0. In that case, simply
skip the update.
Exercise 6.9: The objective function is quadratic and can thus be minimized in one
step. The gradient is ∇ f = [2(x1 + 1), 2(x2 + 3)], which is zero at x∗ = [−1,−3].
The Hessian is positive definite, so x∗ is the minimum.
Exercise 6.10: The new approximation has the form

f (k+1)(x) = y(k+1)+
(

g(k+1)
)⊤(

x− x(k+1)
)

+
1

2

(

x− x(k+1)
)⊤

H(k+1)
(

x− x(k+1)
)

using the true function value and gradient at x(k+1) but requires an updated
Hessian H(k+1). This form automatically satisfies f (k+1)(x(k+1)) = y(k+1) and
∇ f (k+1)(x(k+1)) = g(k+1). We must select the new Hessian to satisfy the third
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condition:

∇ f (k+1)(x(k)) = g(k+1) + H(k+1)
(

x(k) − x(k+1)
)

= g(k+1) −H(k+1)
(

x(k+1) − x(k)
)

= g(k+1) −H(k+1)δ(k+1)

= g(k)

We can rearrange and substitute to obtain:

H(k+1)δ(k+1) = γ(k+1)

Recall that a matrix A is positive definite if for every nonzero vector x⊤Ax > 0.
If we multiply the secant equation by δ(k+1) we obtain the curvature condition:

(

δ(k+1)
)⊤

H(k+1)δ(k+1) =
(

δ(k+1)
)⊤

γ(k+1)
> 0

We seek a new positive definite matrix H(k+1). All positive definite matrices
are symmetric, so calculating a new positive definite matrix requires specifying
n(n+ 1)/2 variables. The secant equation imposes n conditions on these variables,
leading to an infinite number of solutions. In order to have a unique solution,
we choose the positive definite matrix closest to H(k). This objective leads to the
desired optimization problem.
Exercise 7.1: The derivative has n terms whereas the Hessian has n2 terms. Each
derivative term requires two evaluations when using finite difference methods:
f (x) and f (x + he(i)). Each Hessian term requires three evaluations when using
finite difference methods. Thus, to approximate the gradient, you need n + 1

evaluations, and to approximate the Hessian you need roughly n2 evaluations.
Approximating the Hessian is prohibitively expensive for large n. Direct meth-

ods can take comparatively more steps using n2 function evaluations, as direct
methods need not estimate the derivative or Hessian at each step.
Exercise 7.2:Consider minimizing f (x) = xy and x0 = [0, 0]. Proceeding in either
canonical direction will not reduce the objective function, but x0 is clearly not a
minimizer.
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Exercise 7.3: At each iteration, the Hooke-Jeeves method samples 2n points along
the coordinate directions with a step-size a. It stops when none of the points
provides an improvement and the step size is no more than a given tolerance ǫ.
While this often causes the Hooke-Jeeves method to stop when it has converged
to within ǫ of a local minimum, that need not be the case. For example, a valley
can descend between two coordinate directions farther than ǫ before arriving at a
local minimum, and the Hooke-Jeeves method would not detect it.
Exercise 7.4: Minimizing the drag of an airfoil subject to a minimum thickness
(to preserve structural integrity). Evaluating the performance of the airfoil using
computational fluid dynamics involves solving partial differential equations. Be-
cause the function is not known analytically, we are unlikely to have an analytical
expression for the derivative.
Exercise 7.5: The divided rectangles method samples at the center of the intervals
and not where the bound derived from a known Lipschitz constant is lowest.
Exercise 7.6: It cannot be cyclic coordinate search since more than one component
is changing. It can be Powell’s method.
Exercise 8.1: The cross-entropy method must fit distribution parameters with
every iteration. Unfortunately, no known analytic solutions for fitting multivariate
normal distributions exist. Instead, one commonly uses the iterative expectation
maximization algorithm to converge on an answer.
Exercise 8.2: If the number of elite samples is close to the total number of samples,
then the resulting distribution will closely match the population. There will not
be a significant bias toward the best locations for a minimizer, and so convergence
will be slow.
Exercise 8.3: The derivative of the log-likelihood with respect to ν is:

∂

∂ν
ℓ(x | µ, ν) =

∂

∂ν

(

−1

2
ln 2π − 1

2
ln ν− (x− µ)2

2ν

)

= − 1

2ν
+

(x− µ)2

2ν2

The second termwill be zero if themean is already optimal. Thus, the derivative
is −1/2ν and decreasing ν will increase the likelihood of drawing elite samples.
Unfortunately, ν is optimized by approaching arbitrarily close to zero. The asymp-
tote near zero in the gradient update will lead to large step sizes, which cannot
be taken as ν must remain positive.
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Exercise 8.4: The probability density of a design x under a multivariate normal
distribution with mean µ and covariance Σ is

p(x | σ, Σ) =
1

(2π|Σ|)1/2
exp

(

−1

2
(x− µ)⊤Σ

−1(x− µ)

)

We can simplify the problem by maximizing the log-likelihood instead.1 The 1 The log function is concave for
positive inputs, so maximizing
log f (x) also maximizes a strictly
positive f (x).

log-likelihood is:

ln p(x | σ, Σ) = −1

2
ln(2π|Σ|)− 1

2
(x− µ)⊤Σ

−1(x− µ)

= −1

2
ln(2π|Σ|)− 1

2

(

x⊤Σ
−1x− 2x⊤Σ

−1µ+ µ⊤Σ
−1µ

)

We begin by maximizing the log-likelihood of the m individuals with respect
to the mean:

ℓ

(

µ | x(1), · · · , x(m)
)

=
m

∑
i=1

ln p(x(i) | µ, Σ)

=
m

∑
i=1

−1

2
ln(2π|Σ|)− 1

2

((

x(i)
)⊤

Σ
−1x(i) − 2

(

x(i)
)⊤

Σ
−1µ+ µ⊤Σ

−1µ

)

We compute the gradient using the facts that ∇zz⊤Az =
(
A + A⊤

)
z, that

∇za⊤z = a, and that Σ is symmetric and positive definite, and thus Σ
−1 is

symmetric:

∇µℓ

(

µ | x(1), · · · , x(m)
)

=
m

∑
i=1

−1

2

(

∇µ

(

−2
(

x(i)
)⊤

Σ
−1µ

)

+∇µ

(

µ⊤Σ
−1µ

))

=
m

∑
i=1

(

∇µ

((

x(i)
)⊤

Σ
−1µ

)

− 1

2
∇µ

(

µ⊤Σ
−1µ

))

=
m

∑
i=1

Σ
−1x(i) − Σ

−1µ
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We set the gradient to zero:

0 =
m

∑
i=1

Σ
−1x(i) − Σ

−1µ

m

∑
i=1

µ =
m

∑
i=1

x(i)

mµ =
m

∑
i=1

x(i)

µ =
1

m

m

∑
i=1

x(i)

Next we maximize with respect to the inverse covariance, Λ = Σ
−1, using the

fact that |A−1| = 1/|A| with b(i) = x(i) − µ:

ℓ

(

Λ | µ, x(1), · · · , x(m)
)

=
m

∑
i=1

−1

2
ln
(

2π|Λ|−1
)

− 1

2

((

x(i) − µ

)⊤
Λ

(

x(i) − µ

))

=
m

∑
i=1

1

2
ln(|Λ|)− 1

2

(

b(i)
)⊤

Λb(i)

Wecompute the gradient using the facts that∇A|A| = |A|A−⊤ and∇Az⊤Az =

zz⊤:

∇Λℓ

(

Λ | µ, x(1), · · · , x(m)
)

=
m

∑
i=1

∇Λ

(
1

2
ln(|Λ|)− 1

2

(

b(i)
)⊤

Λb(i)

)

=
m

∑
i=1

1

2|Λ|∇Λ|Λ| −
1

2
b(i)
(

b(i)
)⊤

=
m

∑
i=1

1

2|Λ| |Λ|Λ
−⊤ − 1

2
b(i)
(

b(i)
)⊤

=
1

2

m

∑
i=1

Λ
−⊤ − b(i)

(

b(i)
)⊤

=
1

2

m

∑
i=1

Σ− b(i)
(

b(i)
)⊤
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and set the gradient to zero:

0 =
1

2

m

∑
i=1

Σ− b(i)
(

b(i)
)⊤

m

∑
i=1

Σ =
m

∑
i=1

b(i)
(

b(i)
)⊤

Σ =
1

m

m

∑
i=1

(

x(i) − µ

)(

x(i) − µ

)⊤

Exercise 9.1: To bias survival to the fittest by biasing the selection toward the
individuals with better objective function values.
Exercise 9.2: Mutation drives exploration using randomness. It is therefore es-
sential in order to avoid local minima. If we suspect there is a better solution,
we would need to increase the mutation rate and let the algorithm have time to
discover it.
Exercise 9.3: Increase the population size or the coefficient that biases the search
toward individual minima.
Exercise 10.1: First reformulate the problem as f (x) = x + ρ max(−x, 0)2 for
which the derivative is

f ′(x) =







1 + 2ρx if x < 0

1 otherwise
(D.7)

This unconstrained objective function can be solved by setting f ′(x) = 0, which
yields the solution x∗ = − 1

2ρ . Thus, as ρ→ ∞ we have that x∗ → 0.
Exercise 10.2: The problem is reformulated to f (x) = x + ρ(x < 0). The uncon-
strained objective function is unbounded from below as long as ρ is finite and
x approaches negative infinity. The correct solution is not found, whereas the
quadratic penalty method was able to approach the correct solution.
Exercise 10.3: You might try to increase the penalty parameter ρ. It is possible
that ρ is too small and the penalty term is ineffective. In such cases, the iterates
may be reaching an infeasible region where the function decreases faster than the
penalty terms causing the method to converge on an infeasible solution.
Exercise 10.4: Let x∗p be the solution to the unconstrained problem. Notice that
x∗p 6> 0. Otherwise the penalty would be

(

min(x∗p, 0)
)2

= 0, which would imply
that x∗p is a solution to the original problem. Now, suppose x∗p = 0. The first-order
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optimality conditions state that f ′(x∗p) + µx∗p = 0, which implies f ′(x∗p) = 0,
again a contradiction. Thus, if a minimizer exists, it must be infeasible.
Exercise 10.5: It does not require a large penalty ρ to produce an accurate solution.
Exercise 10.6: When iterates should remain feasible.
Exercise 10.7: Consider the following:

minimize
x

x3

subject to x ≥ 0
(D.8)

which is minimized for x∗ = 0. Using the penalty method we can recast it as

minimize
x

x3 + ρ(min(x, 0))2 (D.9)

For any finite ρ, the function remains unbounded from below as x becomes
infinitely negative. Furthermore, as x becomes infinitely negative the function
becomes infinitely steep. In other words, if we start the steepest descent method
too far to the left, we have x3 + ρx2 ≈ x3, and the penalty would be ineffective,
and the steepest descent method will diverge.
Exercise 10.8: You can frame finding a feasible point as an optimization problem
with a constant objective function and a constraint that forces feasibility:

minimize
x

0

subject to h(x) = 0

g(x) ≤ 0

(D.10)

Such a problem can often be solved using penaltymethods. Quadratic penalties
are a common choice because they decrease in the direction of feasibility.
Exercise 10.9: The problem is minimized at x∗ = 1, which is at the constraint
boundary. Solving with the t-transform yields the unconstrained objective func-
tion:

ft(x̂) = sin

(

4

5.5 + 4.5 2x̂
1+x̂2

)

(D.11)

which has a single global minimum at x̂ = −1, correctly corresponding to x∗.
The sigmoid transform has an unconstrained objective function:

fs(x̂) = sin

(

4

1 + 9
1+e−x̂

)

(D.12)
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Unfortunately, the lower-bound a, in this case x = 1, is reached only as x̂ ap-
proaches minus infinity. The unconstrained optimization problem obtained using
the sigmoid transform does not have a solution, and the method fails to properly
identify the solution of the original problem.
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Exercise 10.10: Minimize x2
1 + x2

2 subject to x1 ≥ 1.
Exercise 10.11: We can rearrange the constraint in terms of x1:

x1 = 6− 2x2 − 3x3 (D.13)

and substitute the relation into the objective:

minimize
x2,x3

x2
2 + x3 − (2x2 + 3x3 − 6)3 (D.14)

Exercise 10.12: The constraint must be aligned with the objective function. The
orientation of the objective function is [−1,−2]. The orientation of the constraint
is [a, 1]. The only value for a that aligns them is a = 0.5.
Exercise 10.13: The transformed objective function is f (x) = 1 − x2 + ρp(x),
where p is either a count penalty or a quadratic penalty:

pcount(x) = (|x| > 2) pquadratic(x) = max(|x| − 2, 0)2 (D.15)

The count penalty method does not provide any gradient information to the
optimization process. An optimization algorithm initialized outside of the feasible
set will be drawn away from the feasible region because 1− x2 is minimized by
moving infinitely far to the left or right from the origin. The large magnitude of
the count penalty is not the primary issue; small penalties can lead to similar
problems.
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The quadratic penalty method does provide gradient information to the op-
timization process, guiding searches toward the feasible region. For very large
penalties, the quadratic penalty method will produce large gradient values in the
infeasible region. In this problem, the partial derivative is:

∂ f

∂x
= −2x + ρ







2(x− 2) if x > 2

2(x + 2) if x < −2

0 otherwise
(D.16)

For very large values of ρ, the partial derivative in the infeasible region is also
large, which can cause problems for optimization methods. If ρ is not large,
then infeasible points may not be sufficiently penalized, resulting in infeasible
solutions.
Exercise 11.1: We have chosen to minimize a linear program by evaluating every
vertex in the convex polytope formed by the constraints. Every vertex is thus a
potential minimizer. Vertices are defined by intersections of active constraints. As
every inequality constraint can either be active or inactive, and assuming there are
n inequality constraints, we do not need to examine more than 2n combinations
of constraints.

This method does not correctly report unbounded linear constrained optimiza-
tion problems as unbounded.
Exercise 11.2: The simplex method is guaranteed either to improve with respect
to the objective function with each step or to preserve the current value of the
objective function. Any linear program will have a finite number of vertices. So
long as a heuristic, such as Bland’s rule, is employed such that cycling does not
occur, the simplex method must converge on a solution.
Exercise 11.3:We can add a slack variable x3 and minimize 6x1 + 5x2 + x3 subject
to the constraints −3x1 + 2x2 + x3 = −5 and x3 ≥ 0.
Exercise 11.4: If the current iterate x is feasible, then w⊤x = b ≥ 0. We want the
next point to maintain feasibility, and thus we require w⊤(x + αd) ≥ 0. If the
obtained value for α is positive, that α is an upper bound on the step length. If
the obtained value for α is negative, it can be ignored.
Exercise 11.5: We can rewrite the problem:

minimize
x

c⊤x− µ ∑
i

ln
(

A⊤{i}x
)

(D.17)
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Exercise 12.1: The weighted sum method cannot find Pareto-optimal points in
nonconvex regions of the Pareto frontier.
Exercise 12.2: Nonpopulation methods will identify only a single point in the
Pareto frontier. The Pareto frontier is very valuable in informing the designer
of the tradeoffs among a set of very good solutions. Population methods can
spread out over the Pareto frontier and be used as an approximation of the Pareto
frontier.
Exercise 12.3:

y1

y2 [1, 2]

[2, 1]

[2, 2]

[1, 1]

The only Pareto-optimal point is [1, 1]. Both [1, 2] and [2, 1] are weakly Pareto
optimal.
Exercise 12.4: The ‘‘gradient” of a vector is a matrix. Second-order derivatives
would require using tensors and solving a tensor equation for a search direction
is often computationally burdensome.
Exercise 12.5: The only Pareto-optimal point is y = [0, 0]. The rest of the points
on the bottom-left border are weakly Pareto-optimal.



appendix d. solutions 461

y1

y2

Y

Exercise 12.6: Consider the square criterion space from the previous question.
Using w = [0, 1] assigns zero value to the first objective, causing the entire bottom
edge of the criterion space to have equal value. As discussed above, only y = [0, 0]

is Pareto optimal, the rest are weakly Pareto optimal.
Exercise 12.7: For example, if ygoal is in the criterion set, the goal programming
objective will beminimized by ygoal. If ygoal is also not Pareto optimal, the solution
will not be Pareto optimal either.
Exercise 12.8: The constraint method constrains all but one objective. A Pareto
curve can be generated by varying the constraints. Ifwe constrain the first objective,
each optimization problem has the form:

minimize
x

(x− 2)2 (D.18)

subject to x2 ≤ c (D.19)

The constraint can be satisfied only for c ≥ 0. This allows x to vary between
±√c. The first objective is optimized by minimizing the deviation of x from 2.
Thus, for a given value of c, we obtain:

x∗ =







2 if c ≥ 4
√

c if c ∈ [0, 4)

undefined otherwise
(D.20)

The resulting Pareto curve is:
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Exercise 12.9: The criterion space is the space of objective function values. The
resulting plot is:
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We find that four points are on the approximate Pareto frontier corresponding to
our six sample points. The corresponding design points are x = {−1,−3, 3, 1}.
Exercise 13.1: The one-dimensional unit hypercube is x ∈ [0, 1], and its volume is
1. In this case the required side length ℓ is 0.5. The two-dimensional unit hypercube
is the unit square xi ∈ [0, 1] for i ∈ {1, 2}, which has a 2-dimensional volume, or
area, of 1. The area of a square with side length ℓ is ℓ2, so we solve:

ℓ
2 =

1

2
=⇒ ℓ =

√
2

2
≈ 0.707 (D.21)
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An n-dimensional hypercube has volume ℓn. We thus solve:

ℓ
n =

1

2
=⇒ ℓ = 2−1/n (D.22)
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Exercise 13.2: The probability that a randomly sampled point is within ǫ-distance
from the surface is just the ratio of the volumes. Thus:

P(‖x‖2 > 1− ǫ) = 1− P(‖x‖2 < 1− ǫ) = 1− (1− ǫ)n → 0 (D.23)

as n→ ∞.
Exercise 13.3:
function pairwise_distances(X, p=2)

m = length(X)
[norm(X[i]-X[j], p) for i in 1:(m-1) for j in (i+1):m]

end
function phiq(X, q=1, p=2)

dists = pairwise_distances(X, p)
return sum(dists.^(-q))^(1/q)

end
X = [[cos(2π*i/10), sin(2π*i/10)] for i in 1 : 10]
@show phiq(X, 2)

phiq(X, 2) = 6.422616289332565

No. The Morris-Mitchell criterion is based entirely on pairwise distances. Shift-
ing all of the points by the same amount does not change the pairwise distances
and thus will not change Φ2(X).
Exercise 13.4: A rational number can be written as a fraction of two integers a/b.
It follows that the sequence repeats every b iterations:

x(k+1) = x(k) +
a

b
(mod 1)

x(k) = x(0) + k
a

b
(mod 1)

= x(0) + k
a

b
+ a (mod 1)

= x(0) + (k + b)
a

b
(mod 1)

= x(k+b)
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Exercise 14.1: The linear regression objective function is

‖y− Xθ‖2
2

We take the gradient and set it to zero:

∇(y− Xθ)⊤(y− Xθ) = −2X⊤(y− Xθ) = 0

which yields the normal equation

X⊤Xθ = X⊤y

Exercise 14.2: As a general rule, more descriptive models should be used when
more data are available. If only few samples are available such models are prone
to overfitting, and a simpler model (with fewer degrees of freedom) should be
used.
Exercise 14.3: The model at hand may have a very large number of parameters. In
such case, the resulting linear system will be too large and will require memory
that grows quadratically with the parameter space. Iterative procedures like
stochastic gradient descent require memory linear in the size of the parameter
space and are sometimes the only viable solution.
Exercise 14.4: The leave-one-out cross-validation estimate is obtained by running
k-fold cross validation with k equal to the number of samples in X. This means
we must run 4-fold cross validation for each polynomial degree.
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The lowest mean squared error is obtained for a linear model, k = 1. We fit a
new linear model on the complete dataset to obtain our parameters:
X = [[1],[2],[3],[4]]
y = [0,5,4,6]
bases = polynomial_bases(1, 1)
B = [b(x) for x in X, b in bases]
θ = pinv(B)*y
@show θ

θ = [-0.5, 1.7]

Exercise 15.1: Gaussian processes are nonparametric, whereas linear regression
models are parametric. This means that the number of degrees of freedom of the
model grows with the amount of data, allowing the Gaussian process to maintain
a balance between bias and variance during the optimization process.
Exercise 15.2: Obtaining the conditional distribution of a Gaussian process re-
quires solving equation (15.13). The most expensive operation is inverting the
m×m matrix K(X, X), which is O(m3).
Exercise 15.3: The derivative of f is

(x2 + 1) cos(x)− 2x sin(x)

(x2 + 1)2

Belowwe plot the predictive distribution for Gaussian processes with andwith-
out derivative information. The maximum standard deviation in the predicted
distribution over [−5, 5] for the Gaussian process with derivative information is
approximately 0.377 at x ≈ ±3.8.
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Incorporating derivative information significantly decreases the confidence
interval because more information is available to inform the prediction. Below we
plot the maximum standard deviation in the predicted distribution over [−5, 5]

for Gaussian processes without derivative information with a varying number of
evenly-spaced evaluations. At least eight points are needed in order to outperform
the Gaussian process with derivative information.
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Exercise 15.4: This can be derived according to:

k f∇(x, x′)i = cov
(

f (x),
∂

∂x′i
f (x′)

)

= E

[

( f (x)−E[ f (x)])

(
∂

∂x′i
f (x′)−E

[
∂

∂x′i
f (x′)

])]

= E

[

( f (x)−E[ f (x)])

(
∂

∂x′i
f (x′)− ∂

∂x′i
E
[

f (x′)
]
)]

= E

[

( f (x)−E[ f (x)])
∂

∂x′i

(
f (x′)−E

[
f (x′)

])
]

=
∂

∂x′i
E
[
( f (x)−E[ f (x)])

(
f (x′)−E

[
f (x′)

])]

=
∂

∂x′i
cov( f (x), f (x′)

)

=
∂

∂x′i
k f f (x, x′)

where we have used E
[

∂
∂x f
]

= ∂
∂x E[ f ]. We can convince ourselves that this is

true:

E

[
∂

∂x
f

]

= E

[

lim
h→0

f (x + h)− f (x)

h

]

= lim
h→0

E

[
f (x + h)− f (x)

h

]

= lim
h→0

1

h
(E[ f (x + h)]−E[ f (x)])

=
∂

∂x
E[ f (x)]

provided that the objective function is differentiable.
Exercise 15.5: Let us write the joint Gaussian distribution as:

[

a

b

]

∼ N
([

µa

µb

]

,

[

νa νc

νc νb

])

(D.24)

The marginal distribution over a is N (µa, νa), which has variance νa. The
conditional distribution for a has variance νa− ν2

c /νb.We know νb must be positive
in order for the original covariance matrix to be positive definite. Thus, ν2

c /νb is
positive and νa − ν2

c /νb ≤ νa.
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It is intuitive that the conditional distribution has no greater variance than
the marginal distribution because the conditional distribution incorporates more
information about a. If a and b are correlated, then knowing the value of b informs
us about the value of a and decreases our uncertainty.
Exercise 15.6:We can tune the parameters to our kernel function or switch kernel
functions using generalization error estimation or by maximizing the likelihood
of the observed data.
Exercise 15.7: Maximizing the product of the likelihoods is equivalent to maxi-
mizing the sum of the log likelihoods. Here are the log likelihoods of the third
point given the other points using each kernel:

−3.409
1 3 5

−2

0

2

x

y

exp(−‖x− x′‖)

−3.585

1 3 5

x

exp(−‖x− x′‖2)

−3.914
1 3 5

x

(1 + ‖x− x′‖)−1

−4.112
1 3 5

x

(1 + ‖x− x′‖2)−1

−3.12

1 3 5

x

(1 + ‖x− x′‖)−2

Computing these values over all five folds yields the total log likelihoods:
exp(−‖x− x′‖)→ −8.688

exp(−‖x− x′‖2)→ −9.010

(1 + ‖x− x′‖)−1 → −9.579

(1 + ‖x− x′‖2)−1 → −10.195

(1 + ‖x− x′‖)−2 → −8.088

It follows that the kernel that maximizes the leave-one-out cross-validated
likelihood is the rational quadratic kernel (1 + ‖x− x′‖)−2.
Exercise 16.1: Prediction-based optimization with Gaussian processes can repeat-
edly sample the same point. Suppose we have a zero-mean Gaussian process and
we start with a single point x(1), which gives us some y(1). The predicted mean
has a single global minimizer at x(1). Prediction-based optimization will continue
to sample at x(1).
Exercise 16.2: Error-based exploration wastes effort in reducing the variance and
does not actively seek to minimize the function.
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Exercise 16.3: The Gaussian process looks like this:
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The probability of improvement and expected improvement look like:

−4 −2 0 2 4

0

0.2

0.4

x

pr
ob

ab
ili
ty

of
im

pr
ov

em
en

t

−4 −2 0 2 4
0

0.1

0.2

x

ex
pe

cte
d
im

pr
ov

em
en

t

The maximum probability of improvement is at x = 0.98 for P = 0.523.
The maximum expected improvement is at x = 2.36 for E = 0.236.

Exercise 17.1: The objective is to minimize Ez∼N [ f (x + z)]−
√

Varz∼N [ f (x + z)].
The first term, corresponding to the mean, is minimized at design point a. The
second term, corresponding to the standard deviation, is alsomaximized at design
point a because perturbations to the design at that location cause large variations
in the output. The optimal design is thus x∗ = a.
Exercise 17.2: The deterministic optimization problem is:

minimize
x

x2

subject to γx−2 ≤ 1
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The optimal cross-section length as a function of the factor of safety is x =√
γ. We can thus substitute √γ for the cross-section length in each uncertainty

formulation and evaluate the probability that the design does not fail. Note that
all designs have a 50% chance of failure when the factor of safety is one, due to
the symmetry of the normal distribution.
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Exercise 17.3: Figure D.1 shows the noise-free feasible region. Without noise,
the optimum lies with x1 infinitely negative. We have noise and have chosen
not to accept any outliers with magnitude greater than 6. Such outliers occur
approximately 1.973× 10−7% of the time.

−2 0 2
0

2

4

6

x1

x
2

Figure D.1. The noise-free feasible
region.

The feasible region for x2 lies between ex1 and 2ex1 . The noise is symmetric, so
the most robust choice for x2 is 1.5ex1 .

The width of the feasible region for x2 is ex1 , which increases with x1. The
objective function increases with x1 as well, so the optimal x1 is the lowest such
that the width of the feasible region is at least 12. This results in x1 = ln 12 ≈ 2.485

and x2 = 18.
Exercise 18.1: The cumulative distribution function can be used to calculate these
values:
julia> using Distributions
julia> N = Normal(0,1);
julia> cdf(N, 1) - cdf(N, -1)
0.6826894921370861
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julia> cdf(N, 1)
0.841344746068543

Thus, our sample falls within one standard deviation of the mean about 68.3%
of the time and is less than one standard deviation above the mean 84.1% of the
time.
Exercise 18.2: We begin by substituting in the definition of the sample mean:

Var(µ̂) = Var
(

x(1) + x(2) + · · ·+ x(m)

m

)

= Var
(

1

m
x(1) +

1

m
x(2) + · · ·+ 1

m
x(m)

)

The variance of the sum of two independent variables is the sum of the vari-
ances of the two variables. It follows that:

Var(µ̂) = Var
(

1

m
x(1)

)

+Var
(

1

m
x(2)

)

+ · · ·+Var
(

1

m
x(m)

)

=
1

m2
Var
(

x(1)
)

+
1

m2
Var
(

x(2)
)

+ · · ·+ 1

m2
Var
(

x(m)
)

=
1

m2
(ν + ν + · · ·+ ν)

=
1

m2
(mν)

=
ν

m

Exercise 18.3: The three-term recurrence relation for orthogonal polynomials is
central to their construction and use. A key to the derivation is noticing that a
multiple of z can be shifted from one basis to the other:

∫

Z
(zbi(z))bj(z)p(z) dz =

∫

Z
bi(z)

(
zbj(z)

)
p(z) dz

We must show that

bi+1(z) =







(z− αi)bi(z) for i = 1

(z− αi)bi(z)− βibi−1(z) for i > 1

produces orthogonal polynomials.
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We notice that bi+1 − zbi is a polynomial of degree at most i, so one can write
it as a linear combination of the first i orthogonal polynomials:

bi+1(z)− zbi(z) = −αibi(z)− βibi−1(z) +
i−2

∑
j=0

γijbj(z)

for constants αi, βi, and γij.
Multiplying both sides by bi and p and then integrating yields:

∫

Z
(bi+1(z)− zbi(z))bi(z)p(z) dz =

∫

Z

(

−αibi(z)− βibi−1(z) +
i−2

∑
j=0

γijbj(z)

)

bi(z)p(z) dz

∫

Z
bi+1(z)bi(z)p(z) dz−

∫

Z
zbi(z)bi(z)p(z) dz = −

∫

Z
αibi(z)bi(z)p(z) dz−

−
∫

Z
βibi−1(z)bi(z)p(z) dz +

+
i−2

∑
j=0

∫

Z
γijbj(z)bi(z)p(z) dz

−
∫

Z
zb2

i (z)p(z) dz = −αi

∫

Z
b2

i (z)p(z) dz

producing our expression for αi:

αi =

∫

Z zb2
i (z)p(z) dz

∫

Z b2
i (z)p(z) dz

The expression for βi with i ≥ 1 is obtained instead by multiplying both sides
by bi−1 and p and then integrating.

Multiplying both sides by bk, with k < i− 1, similarly produces:

−
∫

Z
zbi(z)bk(z)p(z) dz = γik

∫

Z
b2

k(z)p(z) dz

The shift property can be applied to yield:
∫

Z
zbi(z)bk(z)p(z) dz =

∫

Z
bi(z)(zbk(z))p(z) dz = 0

as zbk(z) is a polynomial of at most order i− 1, and, by orthogonality, the integral
is zero. It follows that all γik are zero, and the three term recurrence relation is
established.
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Exercise 18.4:We can derive a gradient approximation using the partial derivative
of f with respect to a design component xi:

∂

∂xi
f (x, z) ≈ b1(z)

∂

∂xi
θ1(x) + · · ·+ bk(z)

∂

∂xi
θk(x)

If we have m samples, we can write these partial derivatives in matrix form:






∂
∂xi

f (x, z(1))
...

∂
∂xi

f (x, z(m))






≈







b1(z
(1)) · · · bk(z

(1))
... . . . ...

b1(z
(m)) · · · bk(z

(m))













∂
∂xi

θ1(x)
...

∂
∂xi

θk(x)







We can solve for approximations of ∂
∂xi

θ1(x), . . . , ∂
∂xi

θk(x) using the pseudoin-
verse: 





∂
∂xi

θ1(x)
...

∂
∂xi

θk(x)






≈







b1(z
(1)) · · · bk(z

(1))
... . . . ...

b1(z
(m)) · · · bk(z

(m))







+ 





∂
∂xi

f (x, z(1))
...

∂
∂xi

f (x, z(m))







Exercise 18.5: The estimated mean and variance have coefficients which depend
on the design variables:

µ̂(x) = θ1(x)

ν̂(x) =
k

∑
i=2

θ2
i (x)

∫

Z
bi(z)

2 p(z) dz
(D.25)

The partial derivative of fmod with respect to the ith design component is

∂

∂xi
fmod(x) = α

∂θ1(x)

∂xi
+ 2(1− α)

k

∑
i=2

θi(x)
∂θi(x)

xi

∫

Z
bi(z)

2 p(z) dz (D.26)

Computing equation (D.26) requires the gradient of the coefficients with respect
to x, which is estimated in exercise 18.4.
Exercise 19.1: Enumeration tries all designs. Each component can either be true
or false, thus resulting in 2n possible designs in the worst case. This problem has
23 = 8 possible designs.



474 appendix d. solutions

f(x) = (!x[1] || x[3]) && (x[2] || !x[3]) && (!x[1] || !x[2])
using IterTools
for x in IterTools.product([true,false], [true,false], [true,false])

if f(x)
@show(x)
break

end
end

x = (false, true, true)

Exercise 19.2: The Boolean satisfiability problem merely seeks a valid solution.
As such, we set c to zero.

The constraints are more interesting. As with all integer linear programs, x is
constrained to be nonnegative and integral. Furthermore, we let 1 correspond to
true and 0 correspond to false and introduce the constraint x ≤ 1.

Next, we look at the objective function and observe that the∧ ‘‘and’’ statements
divide f into separate Boolean expressions, each ofwhichmust be true.We convert
the expressions to linear constraints:

x1 =⇒ x1 ≥ 1

x2 ∨ ¬x3 =⇒ x2 + (1− x3) ≥ 1

¬x1 ∨ ¬x2 =⇒ (1− x1) + (1− x2) ≥ 1

where each expression must be satisfied (≥ 1) and a negated variable ¬xi is
simply 1− xi.

The resulting integer linear program is:

minimize
x

0

subject to x1 ≥ 1

x2 − x3 ≥ 0

−x1 − x2 ≥ −1

x ∈ N3

This approach is general and can be used to transform any Boolean satisfiability
problem into an integer linear program.
Exercise 19.3: Totally unimodular matrices have inverses that are also integer
matrices. Integer programs for which A is totally unimodular and b is integral
can be solved exactly using the simplex method.



appendix d. solutions 475

A matrix is totally unimodular if every square nonsingular submatrix is uni-
modular. A single matrix entry is a square submatrix. The determinant of a 1× 1

matrix is the absolute value of its single entry. A single-entry submatrix is only
unimodular if it has a determinant of ±1, which occurs only for entries of ±1.
The single-entry submatrix can also be nonsingular, which allows for 0. No other
entries are permitted, and thus every totally unimodular matrix contains only
entries that are 0, 1, or −1.
Exercise 19.4: The branch and bound method requires that we can perform the
branching and bounding operations on our design.2 The decisions being made 2 P. J. Kolesar, ‘‘A Branch and

Bound Algorithm for the Knap-
sack Problem,’’ Management
Science, vol. 13, no. 9, pp. 723–735,
1967.

in 0-1 knapsack are whether or not to include each item. Each item therefore
represents a branch; either the item is included or it is excluded.

A tree is constructed for every such enumeration according to:

root

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

Each node represents a subproblem in which certain items have already been
included or excluded. The subproblem has the associated decision variables,
values, and weights removed, and the capacity is effectively reduced by the total
weight of the included items.

The branch and bound method avoids constructing the entire tree using in-
formation from the bounding operation. A bound can be constructed by solving
a relaxed version of the knapsack subproblem. This fractional knapsack problem
allows fractional values of items to be allocated, 0 ≤ xi ≤ 1.

The relaxed knapsack problem can be efficiently solvedwith a greedy approach.
Items are added one at a time by selecting the next item with the greatest ratio of
value to weight. If there is enough remaining capacity, the item is fully assigned
with xi = 1. If not, a fractional value is assigned such that the remaining capacity
is saturated and all remaining items have xi = 0.
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We begin by branching on the first item. The subtree with x1 = 0 has the
subproblem:

minimize
x2:6

−
6

∑
i=2

vixi

subject to
6

∑
i=2

wixi ≤ 20

whereas the subtree with x1 = 1 has the subproblem:

minimize
x2:6

−9−
6

∑
i=2

vixi

subject to
6

∑
i=2

wixi ≤ 13

We can construct a lower bound for both subtrees using the greedy approach.
We sort the remaining items by value to weight:

item: 6 4 5 3 2
ratio: 3/4 3/5 5/9 2/4 4/8

0.75 0.6 0.556 0.5 0.5

For the subtree with x1 = 0, we fully allocate items 6, 4, and 5.We then partially
allocate item 3 becausewe have remaining capacity 2, and thus set x3 = 2/4 = 0.5.
The lower bound is thus −(3 + 5 + 3 + 0.5 · 2) = −12.

For the subtree with x1 = 1, we allocate items 6 and 4 and partially allocate
item 5 to x5 = 4/9. The lower bound is thus −(3 + 5 + (4/9) · 3) ≈ −18.333.

The subtree with x1 = 1 has the better lower bound, so the algorithm continues
by splitting that subproblem. The final solution is x = [1, 0, 0, 0, 1, 1].
Exercise 20.1: Six expression trees can be generated:

I

1

I

2

F

π

R

I

1

R

I

2

R

F

π
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Exercise 20.2:Only one expression of height 0 exists and that is the empty expres-
sion. Let us denote this as a0 = 1. Similarly, only one expressions of height 1 exists
and that is the expression {}. Let us denote this as a1 = 1. Three expressions exist
for depth 2, 21 for depth 3, and so on.

Suppose we have constructed all expressions up to height h. All expressions
of height h + 1 can be constructed using a root node with left and right sub-
expressions selected according to:

1. A left expression of height h and a right expression of height less than h

2. A right expression of height h and a left expression of height less than h

3. Left and right expressions of height h

It follows that the number of expressions of height h + 1 are:3 3 This corresponds to OEIS se-
quence A001699.

ah+1 = 2ah(a0 + · · ·+ ah−1) + a2
h

Exercise 20.3: One can use the following grammar and the starting symbol I:

I 7→ D + 10× I

D 7→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Exercise 20.4: Constructing exception-free grammars can be challenging. Such
issues can be avoided by catching the exceptions in the objective function and
suitably penalizing them.
Exercise 20.5: There are many reasons why one must constrain the types of the
variables manipulated during expression optimization. Many operators are valid
only on certain inputs4 and matrix multiplication requires that the dimensions 4 One typically does not take the

square root of a negative number.of the inputs be compatible. Physical dimensionality of the variables is another
concern. The grammar must reason about the units of the input values and of the
valid operations that can be performed on them.

For instance, x× y, with x having units kgambsc, and y having units kgdmes f ,
will produce a value with units kga+dmb+esc+ f . Taking the square root of x will
produce a value with units kga/2mb/2sc/2. Furthermore, operations such as sin

can be applied only to unitless inputs.
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One approach for handling physical units is to associate an n-tuple with each
node in the expression tree. The tuple records the exponent with respect to the
allowable elementary units, which are specified by the user. If the elementary
units involved are mass, length, and time, then each node would have a 3-tuple
(a, b, c) to represent units kgambsc. The associated grammar must take these units
into account when assigning production rules.5

5 For a more thorough overview,
see, for example, A. Ratle and M.
Sebag, ‘‘Genetic Programming and
Domain Knowledge: Beyond the
Limitations of Grammar-Guided
Machine Discovery,’’ in Interna-
tional Conference on Parallel Problem
Solving from Nature, 2000.Exercise 20.6: The grammar can be encoded using ExprRules.jl using string

composition:
grammar = @grammar begin

S = NP * " " * VP
NP = ADJ * " " * NP
NP = ADJ * " " * N
VP = V * " " * ADV
ADJ = |(["a", "the", "big", "little", "blue", "red"])
N = |(["mouse", "cat", "dog", "pony"])
V = |(["ran", "sat", "slept", "ate"])
ADV = |(["quietly", "quickly", "soundly", "happily"])

end

We can use our phenotype method to obtain the solution.
eval(phenotype([2,10,19,0,6], grammar, :S)[1], grammar)

The phenotype is ‘‘little dog ate quickly’’.
Exercise 20.7: We define a grammar for the clock problem. Let Gr be the symbol
for a gear of radius r, let A be an axle, let R be a rim, and let H be a hand. Our
grammar is:

Gr 7→ R A | ǫ

R 7→ R R | Gr | ǫ

A 7→ A A | Gr | H | ǫ

which allows each gear to have any number of rim and axle children. The expres-
sion ǫ is an empty terminal.

A clock with a single second hand can be constructed according to:
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G25

R

ǫ

A

G10

R A

ǫ
G100

R A

ǫ H

r = 10 and 25, t = 0.1s

r = 100, t = 1s

Note that the grammar does not compute the rotation period of the gears. This
is handled by the objective function. A recursive procedure can be written to
return the rotation periods of all hands. The list of rotation periods is subsequently
used to compute the objective function value.
Exercise 20.8:Any of the methods covered in this chapter can be used to complete
the four 4s puzzle. A simple approach is to useMonte Carlo sampling on a suitable
grammar. Sampled expressions with exactly four 4s are evaluated and, if suitable,
are recorded. This procedure is repeated until an expression has been found for
each integer.

One such suitable grammar is:6 6 The gamma function Γ(x) is an
extension of the factorial function
which accepts real and complex-
valued inputs. For positive integers
x it produces (x− 1)!.

R 7→ 4 | 44 | 444 | 4444 | R + R | R−R | R×R | R/R |
RR | ⌊R⌋ | ⌈R⌉ |

√
R | R! | Γ(R)

We round evaluated expressions to the nearest integer. An expression that is
rounded up can be contained inside a ceiling operation, and an expression that is
rounded down can be contained inside a floor operation, so all such expressions
are valid.
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Exercise 20.9: The expression is obtained by applying the production rules:

R 7→ R + R P = 1/12

R 7→ F P = 5/12

F 7→ 1.5 P = 4/7

R 7→ I P = 5/12

I 7→ P = 1/3

which has a probability of

1

12

5

12

4

7

5

12

1

3
=

25

9072
≈ 0.00276

Exercise 20.10: The learning update clears all counts and then increments each
production rule each time it is applied. The five applied rules are each incremented
once, resulting in:

R 7→ R + R | R×R | F | I wR = [1, 0, 1, 1]

F 7→ 1.5 | ∞ pF = [1, 0]

I 7→ 1 | 2 | 3 pI = [0, 1, 0]

Exercise 21.1: Maximize the lift-to-drag ratio of an airfoil shape subject to a
constraint on the structural stability of the airfoil.
Exercise 21.2: Consider a problem where the disciplinary dependency graph is a
(directed) tree: if the optimization starts from the root and proceeds by following
the topological order, then convergence occurs after one traversal of the tree.
Exercise 21.3: It can execute disciplinary analyses in parallel.
Exercise 21.4: The spring-pendulum problem under the multidisciplinary design
feasible architecture is:

minimize
k

f (MDA(k)) subject to k > 0

θ ≤ θmax

MDA(k) converged
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where MDA(k) performs a multidisciplinary analysis on the two disciplinary
analyses: a loads analysis that computes A[M] = mgℓ cos(A[θ]) and a displace-
ment analysis that computes A[θ] = A[M]/A[k]. Whether the multidisciplinary
design analysis converged is included as an additional response variable in order
to enforce convergence.

Solving the optimization problem produces k ≈ 55.353 /N.
Exercise 21.5:The spring-pendulumproblemunder the individual design feasible
architecture is:

minimize
k,θc ,Mc

k

subject to k > 0

θc = Fdisplacement(k, Mc)

Mc = Floads(θc)

θ ≤ θmax

where θc and Mc are the additional coupling variables under control of the opti-
mizer. The two disciplinary analyses can be executed in parallel.
Exercise 21.6:The twodisciplinary optimization problems for the spring-pendulum
problem under the collaborative optimization architecture are:

minimize
k,M

Jdisplacement = (kg −A[kg])
2 + (Mg −A[Mg])

2 + (Fdisplacement(kg, Mg)− θ)2

subject to θg ≤ θmax

k > 0

and
minimize

θg

Jloads = (θg − θ)2 + (Floads(θg)−M)2

where the subscript g indicates a global variable. The global variables areAg = {kg, θg, Mg}.
The system-level optimization problem is:

minimize
kg ,θg ,Mg

kg

subject to Jstructures = 0

Jloads = 0
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Adadelta, 78
Adagrad, see adaptive subgradient
Adam, see adaptive moment estimation
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adaptive subgradient, 77
additive recurrence, 247
affine subspace, 193
aleatory uncertainty, 307
algebra, 2
algorithm, 2
algorithms, 1
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anonymous function, 420
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arity, 377
Armijo condition, 55
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associative array, 388
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automatic differentiation, 27
auxiliary linear program, 202
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backward difference, 20
backward pass, 30
Baldwinian learning, 164
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basis functions, 255
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Bayesian Monte Carlo, 334
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Binet’s formula, 38
bisection method, 49
black box, 99
Bland’s rule, 202
Boolean, 411
Boolean satisfiability problem, 358
Booth’s function, 426
bootstrap method, 270
bootstrap sample, 270
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bracketing phase, 57
branch, 348
branch and bound, 346
branch and cut, 342
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Branin function, 427
Brent-Dekker, 49
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calculus, 3
Cauchy distribution, 148
ceiling, 348
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characteristic length-scale, 278
Chebyschev distance, 439
chessboard distance, 439
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CMA-ES, see covariance matrix adapta-
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collaborative optimization, 403
combinatorial optimization, 339
complete cross-validation, 269
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convex function, 437
convex set, 437
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derivative-free, 99
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descent direction methods, 53
designer, 4
design matrix, 254
design point, 5
design selection, 230
design variables, 5
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dictionary, 388, 417
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DIRECT, see divided rectangles
directional derivative, 22
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Dirichlet distribution, 377
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discrete optimization, 339
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